ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • AMS (American Meteorological Society)  (4)
  • Elsevier  (4)
Collection
Years
  • 1
    Publication Date: 2021-02-08
    Description: Highlights: • Comparison of global NEMO and FESOM configurations with emphasis on the Agulhas system. • Both models simulate a reasonable and comparable large-scale circulation. • Both models have individual strengths and weaknesses to match the observations of the WBC system. • The numerical cost of FESOM is twice the one of NEMO. Abstract: Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing. Although the number of 3D wet grid points used in FESOM is similar to that in the nested NEMO, FESOM uses about two times the number of CPUs to obtain the same model throughput (in terms of simulated model years per day). This is feasible due to the high scalability of the FESOM code.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 119 . pp. 69-76.
    Publication Date: 2020-08-05
    Description: Mesoscale eddies and meanders have been shown to be one of the dominant sources of flow variability in the world's ocean. One example of an isolated eddy hotspot is the South-West Indian Ridge (SWIR). Several investigations have shown that the SWIR and the corresponding planetary potential vorticity field (f/H) exert a strong influence on the location and dynamics of the Antarctic Circumpolar Current (ACC), resulting in substantial fragmentation of the jets downstream of the ridge. The easterly extension of this eddy corridor appears to be restricted to the deep channel separating the Conrad Rise from the Del Cano and Crozet Plateau. However, while the fate of eddies formed at the SWIR has been widely investigated and the frontal character of this eastward extension is well known, the zone of diminishing variability that extends southwards to approximately 60°S remains poorly sampled. Using a combination of Argo, AVISO and NCEP/NCAR datasets, the character of this eddy corridor as a conduit for warm core eddies to move across the ACC into the Antarctic zone is investigated. In this study, we track a single warm-core eddy as it moves southwards from an original position of 31°E, 50°20'S to where it dissipates 10 months later in the Enderby Basin at 56°20'S. An Argo float entrained within the eddy confirms that its water masses are consistent with water found within the Antarctic Polar Frontal Zone north of the APF. Latent and sensible heat fluxes are on average 8W/m2 and 10W/m2 greater over the eddy than directly east of this feature. It is estimated that the eddy lost an average of 5W/m2 of latent heat and 5W/m2 of sensible heat over a 1-year period, an amount capable of melting approximately 0.92m of sea ice. In addition, using an eddy tracking algorithm a total of 28 eddies are identified propagating southwards, 25 of which are anti-cyclonic in rotation. Based on the new Argo float data, combined with AVISO and NCEP/NCAR datasets, these results suggest that the southward passage of warm-core eddies act as vehicles transporting heat, salt and biota southwards across the ACC and into the eastern boundary of the Weddell gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 28 (24). pp. 9697-9706.
    Publication Date: 2020-08-04
    Description: The upper tropical Atlantic Ocean has markedly warmed since the 1960s. It has been shown that this warming was not due to local heat fluxes, and that the trade winds that drive the coastal and equatorial upwelling have intensified rather than weakened. Remote forcing might thus have played an important role. Here model experiments are used to investigate the contribution from an increased inflow of warm Indian Ocean water through Agulhas leakage. A high-resolution hindcast experiment with interannually varying forcing for the time period 1948 to 2007, in which Agulhas leakage increases by about 45% from the 1960s to the early 2000s, reproduces the observed warming trend. To tease out the role of Agulhas leakage, a sensitivity experiment designed to only increase Agulhas leakage is used. Compared to a control simulation it shows a pronounced warming in the upper tropical Atlantic Ocean. A Lagrangian trajectory analysis confirms that a significant portion of Agulhas leakage water reaches the upper 300m of the tropical Atlantic Ocean within two decades, and that the tropical Atlantic warming in the sensitivity experiment is mainly due to water of Agulhas origin. Therefore, it is suggested that the increased trade winds since the 1960s favor upwelling of warmer subsurface waters, which in parts originate from the Agulhas, leading to higher SSTs in the tropics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 44 (7). pp. 1776-1797.
    Publication Date: 2018-04-12
    Description: The relationship between the Agulhas Current and the Agulhas leakage is not well understood. Here, this is investigated using two basin-scale and two global ocean models, of incrementally increasing resolution. The response of the Agulhas Current is evaluated under a series of sensitivity experiments, in which idealised anomalies, designed to geometrically modulate zonal trade wind stress, are applied across the Indian Ocean basin. The imposed wind stress changes exceed ±2 standard deviations from the annual mean trade winds and, in the case of intensification, are partially representative of recently observed trends. The Agulhas leakage is quantified using complimentary techniques based on Lagrangian virtual floats and Eulerian passive tracer flux. As resolution increases, model behavior converges and the sensitivity of the leakage to Agulhas Current transport anomalies is reduced. In the two eddy-resolving configurations tested, the leakage is insensitive to changes in Agulhas Current transport at 32°S, though substantial eddy kinetic energy anomalies are evident. Consistent with observations, the position of the retroflection remains stable. The decoupling of Agulhas Current variability from the Agulhas leakage suggests that, while correlations between the two may exist, they may not have a clear dynamical basis. It is suggested that present and future Agulhas leakage proxies be considered in the context of potentially transient forcing regimes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 43 (10). pp. 2113-2131.
    Publication Date: 2020-08-04
    Description: The Agulhas Current plays a crucial role in the thermohaline circulation through its leakage into the South Atlantic. Under both past and present climates, the trade winds and westerlies could have the ability to modulate the amount of Indian-Atlantic inflow. Compelling arguments have been put forward suggesting that trade winds alone have little impact on the magnitude of Agulhas leakage. Here, employing three ocean models for robust analysis – a global coarse resolution, a regional eddy-permitting and a nested high-resolution eddy-resolving configuration – and systematically altering the position and intensity of the westerly wind belt in a series of sensitivity experiments, it is shown that the westerlies, in particular their intensity, control the leakage. Leakage responds proportionally to the westerlies intensity up to a certain point. Beyond this, through the adjustment of the large-scale circulation, energetic interactions occur between the Agulhas Return Current and the Antarctic Circumpolar Current that result in a state where leakage no longer increases. This adjustment takes place within 1 to 2 decades. Contrary to previous assertions, our results further show that an equatorward (poleward) shift in westerlies increases (decreases) leakage. This occurs due to the redistribution of momentum input by the winds. It is concluded that the reported present-day leakage increase could therefore reflect an unadjusted oceanic response mainly to the strengthening westerlies over the last few decades.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-21
    Description: Highlights: • We coupled LA-ICP-MS Me/Ca single-chamber composition of four planktonic foraminifera with eddy induced hydrographic changes • The Mg/Ca-based temperature difference between N. dutertrei and G. scitula are likely to be an eddy proxy suitable for down-core application • Near-surface dwelling species inhabit well oxygenated surface waters and show lower test Mn/Ca values, compared to deeper dwelling species • Planktonic foraminifera Mn/Ca test values are in line with water column variability in dissolved Mn concentrations Hydrographic conditions in the Mozambique Channel are dominated by the passing of large anticyclonic eddies, propagating poleward into the upstream Agulhas area. Further south, these eddies have been found to control the shedding of Agulhas rings into the Atlantic ocean, thereby playing a key role in Indo-Atlantic Ocean exchange. The element composition of several planktonic foraminifera species collected from sediment trap samples, was compared to in situ water column data from the Mozambique Channel. Single-chamber trace element composition of these foraminifera reveals a close coupling with hydrographic changes induced by anticyclonic eddies. Obtained Mg/Ca values for the surface dwelling Globigerinoides ruber as well as the thermocline dwelling Neogloboquadrina dutertrei follow temperature changes and reduced temperature stratification during eddy conditions. At greater depth. Globorotalia scitula and Pulleniatina obliquiloculata record stable temperatures and thus respond to hydrographic changes with a deepening in habitat depth. Furthermore, test Mn/Ca values indicate a close relationship between water column oxygenation and Mn incorporation in these planktonic foraminiferal species
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-31
    Description: The Lagrangian analysis of sets of particles advected with the flow fields of ocean models are used to study connectivity, i.e. exchange pathways, timescales and volume transports, between distinct oceanic regions. One important factor influencing the dispersion of fluid particles and hence connectivity is the Lagrangian eddy diffusivity, which quantifies the influence of turbulent processes on the rate of particle dispersal. Due to spatial and temporal discretization, turbulence is not fully resolved in modelled velocities, and the concept of eddy diffusivity is used to parametrize the impact of unresolved processes. However, the relations between observational- and model-based Lagrangian eddy diffusivity estimates as well as eddy parameterizations are not clear. This study presents an analysis of the spatially variable near-surface lateral eddy diffusivity estimates obtained from Lagrangian trajectories simulated with 5-day mean velocities from an eddy-resolving ocean model (INALT01) for the Agulhas system. INALT01 features diffusive regimes for dynamically different regions, some of which exhibit strong suppression of eddy mixing by mean flow, and is consistent with the pattern and magnitude of drifter-based eddy diffusivity estimates. Using monthly-mean velocities decreases the estimated diffusivities less than eddy kinetic energy, supporting the idea that large and persistent eddy features dominate eddy diffusivities. For a non-eddying ocean model (ORCA05), Lagrangian eddy diffusivities are greatly reduced, in particular when the Gent and McWilliams parameterization of mesoscale eddies is employed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Highlights: • Assessment of the Indian Ocean simulation from global forced sea- ice models. • SST biases are 2 times smaller in forced simulations than the coupled simulations. • Coupled model shows large inter-model spread over the eastern equatorial Indian Ocean. • Refinement in model horizontal resolution does not significantly improve simulations. • Uncover a secondary pathway of northward cross-equatorial transport along 75 °E. • Models are unable to capture the observed thick barrier layer in the north Bay of Bengal. Abstract: We present an analysis of annual and seasonal mean characteristics of the Indian Ocean circulation and water masses from 16 global ocean–sea-ice model simulations that follow the Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II). All simulations show a similar large-scale tropical current system, but with differences in the Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial Cell (CEC) in the Indian Ocean. We uncover a previously unidentified secondary pathway of northward cross-equatorial transport along 75 °E, thus complementing the pathway near the Somali Coast. This secondary pathway is most prominent in the models which represent topography realistically, thus suggesting a need for realistic bathymetry in climate models. When probing the water mass structure in the upper ocean, we find that the salinity profiles are closer to observations in geopotential (level) models than in isopycnal models. More generally, we find that biases are model dependent, thus suggesting a grouping into model lineage, formulation of the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model horizontal resolution (one degree versus degree) does not significantly improve simulations, though there are some marginal improvements in the salinity and barrier layer results. The results in turn suggest that a focus on improving physical parameterizations (e.g. boundary layer processes) may offer more near-term advances in Indian Ocean simulations than refined grid resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...