ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C10). C10004.
    Publication Date: 2019-09-23
    Description: Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the inline equation Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 120 (3). pp. 1841-1855.
    Publication Date: 2020-06-26
    Description: Denmark Strait Overflow Water (DSOW) supplies the densest contribution to North Atlantic Deep Water and is monitored at several locations in the subpolar North Atlantic. Hydrographic (temperature and salinity) and velocity time series from three multiple-mooring arrays at the Denmark Strait sill, at 180 km downstream (south of Dohrn Bank) and at a further 320 km downstream on the east Greenland continental slope near Tasiilaq (formerly Angmagssalik), were analyzed to quantify the variability and track anomalies in DSOW in the period 2007-2012. No long-term trends were detected in the time series, while variability on time scales from interannual to weekly was present at all moorings. The hydrographic time series from different moorings within each mooring array showed coherent signals, while the velocity fluctuations were only weakly correlated. Lagged correlations of anomalies between the arrays revealed a propagation from the sill of Denmark Strait to the Angmagssalik array in potential temperature with an average propagation time of 13 days, while the correlations in salinity were low. Entrainment of warm and saline Atlantic Water and fresher water from the East Greenland Current (via the East Greenland Spill Jet) can explain the whole range of hydrographic changes in the DSOW measured downstream of the sill. Changes in the entrained water masses and in the mixing ratio can thus strongly influence the salinity variability of DSOW. Fresh anomalies found in downstream measurements of DSOW within the Deep Western Boundary Current can therefore not be attributed to Arctic climate variability in a straightforward way
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...