ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-13
    Description: In situ mineralization of CO 2 in ultramafic rock-hosted aquifers is one of the promising solutions for decreasing CO 2 concentrations in the atmosphere. Naturally altered ultramafic rocks suggest that carbonation processes are controlled by local heterogeneities in the structure of the rock and fluid transport at the water-rock interfaces. We studied the role of rock crystallographic anisotropy relative to the global fluid flow direction on the mineralization of CO 2 by means of electron microscope analyses from the macro- to the micrometer scale (EBSD-FIB). The sample used for the measurements was a hot pressed olivine core percolated by water enriched in CO 2 (pCO 2 = 10 MPa) at 180 °C. During the percolation experiment, olivine was dissolved and two types of carbonates, dolomite, and magnesite, were precipitated on olivine surfaces. The results showed that the dissolution of olivine is controlled by its crystallographic properties as shown by the development of etch-pits only on the (010) ol planes and with elongated shapes parallel to the [010] ol axes. In contrast, the precipitation of carbonates is governed by hydrodynamic properties. Carbonates are heterogeneously distributed in the percolated rock. They are mainly located along the moderate (for dolomite) and the minor (for magnesite) flow paths, both oriented parallel to the principal fluid flow direction, which allow carbonates to be supplied with divalent cations (e.g., Ca 2+ , Mg 2+ , and Fe 2+ ). In these flow paths, carbonate growth is systematically oriented normal to the flow that facilitates the development of chemical gradients with cationic supersaturation conditions for carbonate precipitation near the walls. In natural systems, the (010) ol planes are parallel to the Moho and the (100) ol planes are vertical; our study suggests that flow of CO 2 -rich fluids will induce precipitation of carbonates localized along, and preferentially clogging, vertical flow paths while favoring olivine dissolution along horizontal fluid pathways. This dual control of structure and fluid flow on carbonation mechanisms could be an important parameter allowing sustainable CO 2 storage in peridotites, while limiting the risks of leakage toward the surface.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2020-02-06
    Description: Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...