ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 18 (2). GB2012.
    Publication Date: 2018-03-16
    Description: The physical, chemical/biological processes that control the methane dynamics in the Weddell Sea are revealed by the distributions of methane (CH4), its stable carbon isotope ratio, δ13C-CH4, and the conservative transient tracer, chlorofluorocarbon-11 (CFC-11, CCl3F). In general, a nearly linear correlation between CH4 and CFC-11 concentrations was observed. Air-sea exchange is the major source of methane to this region, and the distribution of methane is controlled mainly by mixing between surface water and methane-poor Warm Deep Water. A significant influence of methane oxidation over the predominant two end-member mixing was only found in the Weddell Sea Bottom Water (WSBW) of the deep central Weddell Basin, where the turnover time of methane appears to be about 20 years. Mixing also controls most of the δ13C-CH4 distribution, but lighter than expected carbon isotopic ratios occur in the deep WSBW of the basin. From box model simulations, it appears that this “anomaly” is due to methane oxidation with a low kinetic isotope fractionation of about 1.004. The surface waters in the Weddell Sea and the Antarctic Circumpolar Current showed a general methane undersaturation of 6 to 25% with respect to the atmospheric mixing ratio. From this undersaturation and model-derived air-sea exchange rates, we estimate a net uptake of CH4 of roughly −0.5 μmol m−2 d−1 during austral autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 12 (3). pp. 467-477.
    Publication Date: 2018-03-14
    Description: The δ13C of dissolved inorganic carbon was measured on samples collected at 49°N in the northeast Atlantic in January 1994. Deeper than 2000 m, δ13C exhibits the same negative correlation versus dissolved phosphate that is observed elsewhere in the deep Atlantic. Upward from 2000 m to about 600 m, δ13C shifts to values more negative than expected from the correlation with nutrients at depth, which is likely due to penetration of anthropogenic CO2. From these data, the profile of the anthropogenic δ13C decrease is calculated by using either dissolved phosphate or apparent oxygen utilization as a proxy for the preanthropogenic δ13C distribution. The shape of the anthropogenic anomaly profile derived from phosphate is similar to that of the increase in dissolved inorganic carbon derived by others in the same area. The reconstruction from oxygen utilization results in a lower estimate of the anthropogenic δ13C decrease in the upper water column, and the vertical anomaly profile is less similar to that of the dissolved inorganic carbon increase. A 13C budget for the atmosphere, ocean, and terrestrial biosphere indicates that within the range of probable ocean CO2 uptake the ratio of δ13C to inorganic carbon change should be mostly influenced by the 13C inventory change of the biosphere. However, the uncertainty in the ratio we derive prevents a strong contraint on the size of the exchangeable biosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 8 . Q04003.
    Publication Date: 2019-09-23
    Description: Measurements of CH4 concentrations in the bottom water during two discrete sampling periods in subsequent years above different cold seeps at the Pacific margin off Costa Rica indicate large-scale variations of CH4 release. CH4 is emitted from mud extrusions and a slide scar at 1000–2300 m water depth. Maximum CH4 concentrations were found to be lower above all investigated sites in autumn 2003 than in autumn 2002 although seep sites are up to 300 km apart. Tidal and current changes were observed but found to apply only to individual seep sites. Increased seismic activity connected to the moment magnitude (M W ) 6.4 earthquake offshore Costa Rica in June 2002 could have had an impact on all seep sites and thereby caused an increase in CH4 emission. This is supported by the largest variations of CH4 concentration found above mud extrusions located above faults likely more strongly affected by tectonic movements. Even though our data indicate a relation between seismicity and CH4 seepage, the relation is not proven, and future work is needed to comprehensively test this hypothesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (3). p. 1081.
    Publication Date: 2018-03-15
    Description: Methane in surface waters and marine air off Oregon (44°24′N–44°54′N, 124°36′W–125°24′W) was continuously surveyed in July 1999. During a high-resolution survey after a period of steady winds from the north, CH4 concentrations were high in the northeastern region, near the shelf edge. The highest CH4 concentrations were 2.5 times higher than equilibrium with the atmospheric partial pressure. In contrast, concentrations were near equilibrium in the western part of the survey area, the Hydrate Ridge. The increase in CH4 from southwest to northeast correlates with a drop in sea surface temperature (SST), from 16.5°C to 〈13.5°C, toward the shelf edge. The observed SST pattern was caused by summer upwelling off Oregon. The results suggest that CH4 derived from bottom sources near the shelf/slope break and methane found in connection with shallow (100–300 m) turbidity layers is transported to the surface by coastal upwelling, which causes an enhanced net flux of CH4 to the atmosphere. Vertical profiles of the methane distribution on the shelf in October demonstrate the accumulation of methane introduced by shelf sources. Surface concentrations at these stations in October (during nonupwelling conditions) were lower than in July (during upwelling) and were only slightly oversaturated with respect to the atmosphere. An acoustic Doppler current profiler survey indicates that the observed trend cannot be attributed to a surface flow reversal in the area. The low-salinity waters in the core of the Columbia River plume (S 〈 31) showed no enhanced CH4 concentrations. The trend of higher CH4 concentrations at lower temperatures existed over the whole 17-day survey, but large spatial and temporal variations existed. The presence of methane sources in regions of coastal upwelling worldwide, such as shallow seeps, gas hydrates, and intermediate nepheloid layers, suggests that the enhancement of CH4 fluxes to the atmosphere by coastal upwelling occurs on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-02
    Description: Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ∼400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ∼60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at 〈100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ∼4-20 μmol m-2 d-1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (22). p. 2081.
    Publication Date: 2018-02-20
    Description: We report on controlled experiments to document the fate of naturally occurring methane hydrate released from the sea floor (780 m, 4.3°C) by remotely operated vehicle (ROV) disturbance. Images of buoyant sediment-coated solids rising (∼0.24 m/s) from the debris cloud, soon revealed clear crystals of methane hydrate as surficial material sloughed off. Decomposition and visible degassing began close to the predicted phase boundary, yet pieces initially of ∼0.10 m size easily survived transit to the surface ocean. Smaller pieces dissolved or dissociated before reaching the surface ocean, yet effectively transferred gas to depths where atmospheric ventilation times are short relative to methane oxidation rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 . L07609.
    Publication Date: 2018-03-28
    Description: Submarine high‐intensity methane seeps have been surveyed in the Sorokin Trough and Paleo Dnepr Area in the Black Sea from May to June, 2003 to estimate the sea‐air methane flux. The Sorokin Trough mud volcano area in around 2080 m water depth shows no direct effects on the methane concentration in the surface water and the atmosphere (average methane saturation ratios (SR) of 143%). The average sea‐air methane flux can be determined as 0.2–0.57 nmol m−2 s−1, using two different sea‐air gas exchange models; mean wind speed were extraordinary low throughout the cruise (1.16 m s−1). The investigations in the Paleo Dnepr Area (60 to 800 m water depth) reflects a more diverse pattern. Spots of high methane concentrations in the surface water have been recorded above a seep location in around 90 m water depth (SR up to 294%). The air‐sea methane flux above this seep site (0.96–2.32 nmol m−2 s−1) is 3 times higher than calculated for the surrounding shelf (0.32–0.77 nmol m−2 s−1) and 5 times higher than assessed for open Black Sea waters (water depth 〉 200 m, 0.19–0.47 nmol m−2 s−1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-16
    Description: To constrain the fluxes of methane (CH4) in the water column above the accretionary wedge along the Cascadia continental margin, we measured methane and its stable carbon isotope signature (δ13C-CH4). The studies focused on Hydrate Ridge (HR), where venting occurs in the presence of gas-hydrate-bearing sediments. The vent CH4 has a light δ13C-CH4 biogenic signature (−63 to −66‰ PDB) and forms thin zones of elevated methane concentrations several tens of meters above the ocean floor in the overlying water column. These concentrations, ranging up to 4400 nmol L−1, vary by 3 orders of magnitude over periods of only a few hours. The poleward undercurrent of the California Current system rapidly dilutes the vent methane and distributes it widely within the gas hydrate stability zone (GHSZ). Above 480 m water depth, the methane budget is dominated by isotopically heavier CH4 from the shelf and upper slope, where mixtures of various local biogenic and thermogenic methane sources were detected (−56 to −28‰ PDB). The distribution of dissolved methane in the working area can be represented by mixtures of methane from the two primary source regions with an isotopically heavy background component (−25 to −6‰ PDB). Methane oxidation rates of 0.09 to 4.1% per day are small in comparison to the timescales of advection. This highly variable physical regime precludes a simple characterization and tracing of “downcurrent” plumes. However, methane inventories and current measurements suggest a methane flux of approximately 3 × 104 mol h−1 for the working area (1230 km2), and this is dominated by the shallower sources. We estimate that the combined vent sites on HR produce 0.6 × 104 mol h−1, and this is primarily released in the gas phase rather than dissolved within fluid seeps. There is no evidence that significant amounts of this methane are released to the atmosphere locally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 13 (7). Q07007.
    Publication Date: 2018-03-01
    Description: The Logatchev hydrothermal field at 14°45′N on the MAR is characterized by gas plumes that are enriched in methane and helium compared to the oceanic background. We investigated CH4 concentration and δ13C together with δ3He in the water column of that region. These data and turbidity measurements indicate that apart from the known vent fields, another vent site exists northeast of the vent field Logatchev 1. The distribution of methane and 3He concentrations along two sections were used in combination with current measurements from lowered acoustic Doppler current profilers (LADCP) to calculate the horizontal plume fluxes of these gases. According to these examinations 0.02 μmol s−1 of 3He and 0.21 mol s−1 of methane are transported in a plume that flows into a southward direction in the central part of the valley. Based on 3He measurements of vent fluid (22 ± 6 pM), we estimate a total vent flux in this region of about 900 L s−1 and a total flux of CH4 of 3.2 mol s−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...