ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (17)
  • AGU (American Geophysical Union)  (11)
  • Frontiers  (2)
  • GeoForschungsZentrum  (2)
  • GSA (Geological Society of America)  (1)
  • Nature Research  (1)
  • Oxford University Press
Collection
Source
Publisher
  • AGU (American Geophysical Union)  (11)
  • Frontiers  (2)
  • GeoForschungsZentrum  (2)
  • GSA (Geological Society of America)  (1)
  • Nature Research  (1)
  • +
  • 1
    Publication Date: 2019-10-24
    Description: The dynamically recrystallized grain size is a material parameter associated with dislocation creep of crystalline solids that is especially important as a flow stress indicator via piezometer calibrations. Grain sizes have been measured in many studies of deformed rocks as well as metals and ceramics, but global analyses of the frequency distribution of dynamically recrystallized grain sizes are lacking. Here we present the first systematic investigation of the recrystallized grain size distribution, for quartz. The grain diameters, compiled from 555 samples of 31 studies of quartz mylonites deformed over a wide range of conditions, extend from ∼3 μm to 3 mm, with distinct maxima at 10–20 μm and 70–80 μm, and minima at 35–40 μm and ∼120 μm. The frequency maxima correlate with distinct microstructures and the minima with the transitions between these microstructures, which we interpret to result from the dominance of the recrystallization mechanisms of bulging, subgrain rotation, and grain boundary migration recrystallization. These results demonstrate the necessity of distinct piezometer calibrations for different recrystallization mechanisms and highlight the importance of the recrystallized grain size for theoretical models of dynamic recrystallization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 92 (47). p. 421.
    Publication Date: 2016-01-13
    Description: The Mw = 9.0 earthquake of 11 March 2011 at the Japan Trench and its devastating tsunami underscore the importance of understanding seismogenic behavior of subduction faults and realistically estimating the potential size of future earthquakes and tsunamis. For the Cascadia subduction zone (Figure 1a), a critical knowledge gap is the level of microseismicity offshore, especially near the megathrust, needed to better understand the state of the locked zone. In 2010 the first detailed seafloor earthquake monitoring campaign along the northern Cascadia subduction zone recorded nearby earthquakes in the local magnitude (ML) range from possibly around zero to 3.8 (Figures 1b and 1c) and larger earthquakes from outside this region. Preliminary analyses indicate that the network appears to have yielded a fairly complete catalog for events with ML 〉 1.2. Only a few tens of these events occurred beneath the continental shelf and slope (Figure 1a). The majority of the earthquakes were located along the margin-perpendicular Nootka fault zone. The relatively low seismicity away from the Nootka fault is consistent with a fully locked megathrust. Land-based GPS measurements cannot resolve the question of whether the offshore part of the megathrust seismogenic zone is narrow and fully locked or wider and only partially locked (slowly creeping). If it were only partially locked, the seafloor seismometer data should show many more small earthquakes along the interface than were actually detected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GeoForschungsZentrum
    In:  [Talk] In: Sonderkolloquium "Geotechnologien", GeoForschungsZentrum Potsdam, 09.-10.06.2005, Potsdam . Continental margins - earth's focal points of usage and hazard potential ; pp. 100-105 .
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GeoForschungsZentrum
    In:  [Talk] In: Sonderkolloquium "Geotechnologien", GeoForschungszentrum Potsdam, 09.06.-10.06.2005, Potsdam . Continental margins - earth's focal points of usage and hazard potential ; pp. 18-23 .
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: A Continental Plate Boundary: Tectonics at South Island, New Zealand. , ed. by Okaya, D., Stern, T. and Davey, F. Geophysical Monograph Series, 175 . AGU (American Geophysical Union), Washington, DC, pp. 47-73. ISBN 978-0-87590-440-5
    Publication Date: 2016-02-12
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-12
    Description: We use seismic reflection and refraction data to determine crustal structure, to map a fore-arc basin containing 12 km of sediment, and to image the subduction thrust at 35 km depth. Seismic reflection megasequences within the basin are correlated with onshore geology: megasequence X, Late Cretaceous and Paleogene marine passive margin sediments; megasequence Y, a similar to 10,000 km(3) submarine landslide emplaced during subduction initiation at 22 Ma; and megasequence Z, a Neogene subduction margin megasequence. The Moho lies at 17 km beneath the basin center and at 35 km at the southern margin. Beneath the western basin margin, we interpret reflective units as deformed Gondwana fore-arc sediment that was thrust in Cretaceous time over oceanic crust 7 km thick. Raukumara Basin has normal faults at its western margin and is uplifted along its eastern and southern margins. Raukumara Basin represents a rigid fore-arc block > 150 km long, which contrasts with widespread faulting and large Neogene vertical axis rotations farther south. Taper of the western edge of allochthonous unit Y and westward thickening and downlap of immediately overlying strata suggest westward or northwestward paleoslope and emplacement direction rather than southwestward, as proposed for the correlative onshore allochthon. Spatial correlation between rock uplift of the eastern and southern basin margins with the intersection between Moho and subduction thrust leads us to suggest that crustal underplating is modulated by fore-arc crustal thickness. The trench slope has many small extensional faults and lacks coherent internal reflections, suggesting collapse of indurated rock, rather than accretion of > 1 km of sediment from the downgoing plate. The lack of volcanic intrusion east of the active arc, and stratigraphic evidence for the broadening of East Cape Ridge with time, suggests net fore-arc accretion since 22 Ma. We propose a cyclical fore-arc kinematic: rock moves down a subduction channel to near the base of the crust, where underplating drives rock uplift, oversteepens the trench slope, and causes collapse toward the trench and subduction channel. Cyclical rock particle paths led to persistent trench slope subsidence during net accretion. Existing global estimates of fore-arc loss are systematically too high because they assume vertical particle paths. Citation: Sutherland, R., et al. (2009), Reactivation of tectonics, crustal underplating, and uplift after 60 Myr of passive subsidence, Raukumara Basin, Hikurangi-Kermadec fore arc, New Zealand: Implications for global growth and recycling of continents, Tectonics, 28, TC5017, doi: 10.1029/2008TC002356.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-19
    Description: Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp 〉 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is 〉10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp 〉 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-04
    Description: Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5–7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km) and strike (~005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7–7.3 km s-1. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Long-term monitoring over one year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant sub-surface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-14
    Description: Traveltimes between shots from nine marine seismic reflection lines and nine onshore recorders were used to construct a 3-D P wave velocity model of the northern Hikurangi subduction margin, New Zealand. From north to south between Raukumara Basin and Raukumara Peninsula, the Moho of the overriding plate increases in depth from 17 to similar to 35 km. Low seismic P wave velocities of 3.5-5.0 km/s are localized within a similar to 10 km thick prism in the lower crust of the overriding plate immediately updip of the intersection between the subduction thrust and Moho and beneath the topographic crest of East Cape Ridge and the Raukumara Range. Southward, this region of low seismic velocities and surface uplift increases in distance from the trench as the thickness of the crust in the overriding plate increases. We interpret this low-velocity volume to be underplated sedimentary rocks and crustal materials that were tectonically eroded by subduction beneath the trench slope. The buoyancy and low strength of these subducted materials are proposed to assist the escape from a subduction channel near the base of the crust and drive local rock uplift. In the middle crust, our observations of very low velocity suggest high fluid-filled porosities of 12%-18%, and the implied buoyancy anomaly may enhance underplating. At greater depths the process is driven by the contrast between upper crustal quartz-feldspar mineralogy and the denser diabase or olivine-rich lithologies of the lower crust and mantle. We estimate a rate of lower crustal underplating at the northern Hikurangi margin of 20 +/- 7 km(3) Ma(-1) km(-1) since 22 Ma. We suggest that underplating provides an efficient means of accreting subducted sediment and tectonically eroded material to the lower crust and that the flux of forearc crustal rocks into the mantle at subduction zones may be systematically overestimated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...