ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (40)
  • AGU (American Geophysical Union)  (36)
  • ECO2 Project Office  (4)
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 121 (3). pp. 1405-1424.
    Publication Date: 2019-09-23
    Description: A bottom-simulating reflector (BSR) occurs west of Svalbard in water depths exceeding 600 m, indicating that gas hydrate occurrence in marine sediments is more widespread in this region than anywhere else on the eastern North Atlantic margin. Regional BSR mapping shows the presence of hydrate and free gas in several areas, with the largest area located north of the Knipovich Ridge, a slow-spreading ridge segment of the Mid Atlantic Ridge system. Here, heat flow is high (up to 330 mW m-2), increasing towards the ridge axis. The coinciding maxima in across-margin BSR width and heat flow suggest that the Knipovich Ridge influenced methane generation in this area. This is supported by recent finds of thermogenic methane at cold seeps north of the ridge termination. To evaluate the source rock potential on the western Svalbard margin, we applied 1D petroleum system modeling at three sites. The modeling shows that temperature and burial conditions near the ridge were sufficient to produce hydrocarbons. The bulk petroleum mass produced since the Eocene is at least 5 kt and could be as high as ~0.2 Mt. Most likely, source rocks are Miocene organic-rich sediments and a potential Eocene source rock that may exist in the area if early rifting created sufficiently deep depocenters. Thermogenic methane production could thus explain the more widespread presence of gas hydrates north of the Knipovich Ridge. The presence of microbial methane on the upper continental slope and shelf indicates that the origin of methane on the Svalbard margin varies spatially.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D1.3 . ECO2 Project Office, Kiel, Germany, 23 pp.
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-04
    Description: The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of highresolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450–500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-27
    Description: The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites along the continental margin, using ray-trace forward modeling. Two southern sites were located in the vicinity of a 30 km long zone where methane gas bubbles escaping from the seafloor were observed during the cruise. The three remaining sites were located along an E-W orientated line in the north of the margin. At the deepest northern site, Vp anomalies indicate the presence of hydrate in the sediment immediately overlying a zone containing free gas up to 100-m thick. The acoustic impedance contrast between the two zones forms a bottom-simulating reflector (BSR) at approximately 195 m below the seabed. The two other sites within the gas hydrate stability zone (GHSZ) do not show the clear presence of a BSR or of gas hydrate. However, anomalously low Vp, indicating the presence of free gas, was modeled for both sites. The hydrate content was estimated from Vp and Vs, using effective-medium theory. At the deepest northern site, modeling suggests a pore-space hydrate concentration of 7–12%, if hydrate forms as part of a connected framework, and about 22% if it is pore-filling. At the two other northern sites, located between the deepest site and the landward limit of the GHSZ, we suggest that hydrate is present in the sediment as inclusions. Hydrate may be present in small quantities at these two sites (4–5%) of the pore space. The variation in lithology for the three sites indicated by high-resolution seismic profiles may control the distribution, concentration and formation of hydrate and free gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-07
    Description: New high-resolution multichannel seismic data GWADASEIS-2009 and JC45/46-2010 cruises; 72 and 60 channels, respectively) combined with previous data(AGUADOMAR-1999 and CARAVAL-2002; 6 and 24 channels, respectively) allow a detailed investigation of mass-wasting processes around the volcanic island of Montserrat in the Lesser Antilles. Seven submarine deposits have sources on the flanks of Montserrat, while three are related to the nearby Kahouanne submarine volcanoes. The most voluminous deposit (∼20 km3) within the Bouillante-Montserrat half-graben has not been described previously and is probably related to a flank instability of the Centre Hills Volcano on Montserrat, while other events are related to the younger South Soufrière Hills-Soufrière Hills volcanic complex. All deposits are located to the south or southeast of the island in an area delimited by faults of the Bouillante-Montserrat half-graben. They cover a large part of the southeast quarter of the surrounding seafloor (∼520 km2), with a total volume of ∼40 km3. Our observations suggest that the Bouillante-Montserrat half-graben exerts a control on the extent and propagation of the most voluminous deposits. We propose an interpretation for mass-wasting processes around Montserrat similar to what has happened for the southern islands of the Lesser Antilles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-27
    Description: Mud volcanoes are seafloor expressions of focused fluid flow that are common in compressional tectonic settings. New high-resolution 3-D seismic data from the Mercator mud volcano (MMV) and an adjacent buried mud volcano (BMV) image the internal structure of the top 800 m of sediment at both mud volcanoes, revealing that both are linked and have been active episodically. The total volumes of extruded mud range between 0.15 and 0.35 km3 and 0.02–0.05 km3 for the MMV and the BMV, respectively. The pore water composition of surface sediment samples suggests that halokinesis has played an important role in the evolution of the mud volcanoes. We propose that erosion of the top of the Vernadsky Ridge that underlies the mud volcanoes activated salt movement, triggering deep migration of fluids, dissolution of salt, and sediment liquefaction and mobilization since the end of the Pliocene. Since beginning of mud volcanism in this area, the mud volcanoes erupted four times while there was only one reactivation of salt tectonics. This implies that there are other mechanisms that trigger mud eruptions. The stratigraphic relationship of mudflows from the MMV and BMV indicates that the BMV was triggered by the MMV eruptions. This may either be caused by loading-induced hydrofracturing within the BMV or due to a common feeder system for both mud volcanoes. This study shows that the mud volcanoes in the El Arraiche mud volcano field are long-lived features that erupt with intervals of several tens of thousands of years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 10 (Q04009).
    Publication Date: 2018-03-14
    Description: [1] The present geological setting west of Svalbard closely parallels the situation off mid-Norway after the last glaciation, when crustal unloading by melting of ice induced very large earthquakes. Today, on the modern Svalbard margin, increasing bottom water temperatures are destabilizing marine gas hydrates, which are held in continental margin sediments consisting of interlayered contourite deposits and glacigenic debris flows. Both unloading earthquakes and hydrate failure have been identified as key factors causing several megalandslides off Norway during early Holocene deglaciation. The most prominent event was the Storegga Slide 8200 years B.P. which caused a tsunami up to 23 m high on the Faroe and Shetland islands. Here we show by numerical tsunami modeling that a smaller submarine landslide west of Svalbard, 100 m high and 130 km wide, would cause a tsunami capable of reaching northwest Europe and threatening coastal areas. A tsunami warning system based on tiltmeters would give a warning time of 1–4 h.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-27
    Description: Active gas venting occurs on the uppermost continental slope off west Svalbard, close to and upslope from the present-day intersection of the base of methane hydrate stability (BMHS) with the seabed in about 400 m water depth in the inter-fan region between the Kongsfjorden and Isfjorden cross-shelf troughs. From an integrated analysis of high-resolution, two-dimensional, pre-stack migrated seismic reflection profiles and multibeam bathymetric data, we map out a bottom simulating reflector (BSR) in the inter-fan region and analyze the subsurface gas migration and accumulation. Gas seeps mostly occur in the zone from which the BMHS at the seabed has retreated over the recent past (1975–2008) as a consequence of a bottom water temperature rise of 1°C. The overall margin-parallel alignment of the gas seeps is not related to fault-controlled gas migration, as seismic evidence of faults is absent. There is no evidence for a BSR close to the gas flare region in the upper slope but numerous gas pockets exist directly below the predicted BMHS. While the contour following trend of the gas seeps could be a consequence of retreat of the landward limit of the BMHS and gas hydrate dissociation, the scattered distribution of seeps within the probable hydrate dissociation corridor and the occurrence of a cluster of seeps outside the predicted BMHS limit and near the shelf break indicate the role of lithological heterogeneity in focusing gas migration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 105 (B12). 28,443-28,454.
    Publication Date: 2018-01-09
    Description: Multichannel seismic reflection profiles in the Hel Graben, V0ring Basin, reveal a sill complex at approximately 5 km depth. It is associated with exceptionally high, 7.4 km s−1, seismic wide-angle velocities. The existence of observable wide- angle arrivals shows that the sills act as efficient waveguides. Seismic reflection data and amplitude modeling constrain the thickness of individual sills to approximately 100 m. Sonic logs from sills of similar thickness on the nearby Utgard High show an average velocity of 7.0 km s−1. Such high velocities require an olivine-gabbroic sill composition and emplacement under conditions which allowed growth of relatively large crystal sizes. A possible reason for such an emplacement environment is the HeI Graben's role as an intrusion center during breakup volcanism. This would provide the necessary duration of the magmatic activity as well as locally increased melt volumes and cooling times. Sill complexes of this kind decrease the accuracy of determined velocity fields and crustal geometries below the top of the sill complex, affecting depth conversion and gravity modeling. Furthermore, the results question the concept of lower crustal bodies as large-scale, homogeneous accumulations of mafic melt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-06
    Description: Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8–4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15–17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°–50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8–10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...