ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
  • AGU (American Geophysical Union)  (2)
  • 1
    Publication Date: 2017-03-17
    Description: Deep convection in open ocean polynyas are common sources of error on the representation of Antarctic Bottom Water (AABW) formation in Ocean General Circulation Models. Even though those events are well described in non-assimilatory ocean simulations, recent appearance of open ocean polynya in Estimating the Circulation and Climate of the Ocean Phase II reanalysis product raises a question if this spurious event is also found in state-of-art reanalysis products. In order to answer this question, we evaluate how three recently released high-resolution ocean reanalysis form AABW in their simulations. We found that two of them (ECCO2 and SoSE) create AABW by open ocean deep convection events in Weddell Sea, showing that assimilation of sea ice has not been enough to avoid open ocean polynya appearance. The third reanalysis – My Ocean University Reading – actually creates AABW by a rather dynamically accurate mechanism, depicting both continental shelf convection, and exporting of Dense Shelf Water to open ocean. Although the accuracy of the AABW formation in this reanalysis allows an advance in represent this process, the differences found between the real ocean and the simulated one suggests that ocean reanalysis still need substantial improvements to accurately represent AABW formation.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-07
    Description: Open ocean deep convection is a common source of error in the representation of Antarctic Bottom Water (AABW) formation in ocean general circulation models. Although those events are well described in non-assimilatory ocean simulations, the recent appearance of a massive open ocean polynya in the Estimating the Circulation and Climate of the Ocean Phase II reanalysis product (ECCO2) raises questions on which mechanisms are responsible for those spurious events and whether they are also present in other state-of-the-art assimilatory reanalysis products. To investigate this issue, we evaluate how three recently released high-resolution ocean reanalysis products form AABW in their simulations. We found that two of the products create AABW by open ocean deep convection events in the Weddell Sea that are triggered by the interaction of sea ice with the Warm Deep Water, which shows that the assimilation of sea ice is not enough to avoid the appearance of open ocean polynyas. The third reanalysis, My Ocean University Reading UR025.4, creates AABW using a rather dynamically accurate mechanism. The UR025.4 product depicts both continental shelf convection and the export of Dense Shelf Water to the open ocean. Although the accuracy of the AABW formation in this reanalysis product represents an advancement in the representation of the Southern Ocean dynamics, the differences between the real and simulated processes suggest that substantial improvements in the ocean reanalysis products are still needed to accurately represent AABW formation.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-26
    Description: The northern Antarctic Peninsula (NAP) is a highly dynamic transitional zone between the subpolar-polar and oceanic-coastal environments, and it is located in an area affected by intense climate change, including intensification and spatial shifts of the westerlies as well as atmospheric and oceanic warming. In the NAP area, the water masses originate mainly from the Bellingshausen and Weddell seas, which create a marked regional dichotomy thermohaline characteristic. Although the NAP area has relatively easy access when compared to other Southern Ocean environments, our understanding of the water masses' distribution and the dynamical processes affecting the variability of the region is still limited. That limitation is closely linked to the sparse data coverage, as is commonly the case in most Southern Ocean environments. This work provides a novel seasonal three-dimensional high-resolution hydrographic gridded data set for the NAP (version 1), namely the NAPv1.0. Hydrographic measurements from 1990 to 2019 comprising data collected by conductivity, temperature, depth (CTD) casts; sensors from the Marine Mammals Exploring the Oceans Pole to Pole (MEOP) consortium; and Argo floats have been optimally interpolated to produce maps of in situ temperature, practical salinity, and dissolved oxygen at ∼ 10 km spatial resolution and 90 depth levels. The water masses and oceanographic features in this regional gridded product are more accurate than other climatologies and state estimate products currently available. The data sets are available in netCDF format at https://doi.org/10.5281/zenodo.4420006 (Dotto et al., 2021). The novel and comprehensive data sets presented here for the NAPv1.0 product are a valuable tool to be used in studies addressing climatological changes in the unique NAP region since they provide accurate initial conditions for ocean models and improve the end of the 20th- and early 21st-century ocean mean-state representation for that area.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The wind-driven part of the South Atlantic Ocean is primarily ventilated through central and intermediate water formation. Through the water mass formation processes, anthropogenic carbon (C-ant) is introduced into the ocean's interior which in turn makes the South Atlantic region vulnerable to ocean acidification. C-ant and the accompanying acidification effects have been estimated for individual sections in the region since the 1980s but a comprehensive synthesis for the entire basin is still lacking. Here, we quantified the C-ant accumulation rates and examined the changes in the carbonate system properties for the South Atlantic using a modified extended multiple linear regression method applied to five hydrographic sections and data from the GLODAPv2.2021 product. From 1989 to 2019, a mean C-ant column inventory change of 0.94 +/- 0.39 mol C m(-2) yr(-1) was found. C-ant accumulation rates of 0.89 +/- 0.33 mu mol kg(-1) yr(-1) and 0.30 +/- 0.29 mu mol kg(-1) yr(-1) were observed in central and intermediate waters, accompanied by acidification rates of -0.0020 +/- 0.0007 pH units yr(-1) and -0.0009 +/- 0.0009 pH units yr(-1), respectively. Furthermore, increased remineralization was observed in intermediate waters, amplifying the acidification of this water mass, especially at the African coast along 25 degrees S. This increase in remineralization is likely related to circulation changes and increased biological activity nearshore. Assuming no changes in the observed trends, South Atlantic intermediate waters will become unsaturated with respect to aragonite in similar to 30 years, while the central water of the eastern margins will become unsaturated in similar to 10 years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-07
    Description: Flow of dense shelf water provide an efficient mechanism for pumping CO 2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon ( C ant ) and its consequences remain unclear. Here, we show prominent transport of C ant (25.0 ± 4.7 Tg C yr −1 ) into the deep ocean (〉2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower C ant in the upper waters than that of other open oceans to sustain a stronger CO 2 uptake capacity (16.9 ± 3.8 Tg C yr −1 ). Nevertheless, the accumulation of C ant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 . Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt. Plain Language Summary The Southern Ocean is thought to uptake and store a large amount of anthropogenic CO 2 ( C ant ), but little attention has been paid to the Antarctic coastal regions in the south of 60°S, mainly due to the lack of observations. Based on an integrated data set, we discovered the deep penetration of C ant and a visible pattern of relatively high concentration of C ant along the AABW formation pathway, and the concentration of C ant along the shelf‐slope is higher than that of other marginal seas at low‐mid latitudes, implying a highly effective C ant transport in AABW formation areas. We also found strong upper‐layer CO 2 uptake and a significant acidification rate in the deep waters of the Southern Ocean due to the AABW‐driven CO 2 transport, which is 3 times faster than those in other deep oceans. It is therefore crucial to understand how the Antarctic shelf regions affect the global carbon cycle through the uptake and transport of anthropogenic CO 2 , which also drives acidification in the other ocean basins. Key Points We show evidence for the accumulation of C ant along the Antarctic shelf‐slope into the deep ocean The process of AABW formation drives C ant downward transport at 25.0 ± 4.7 Tg C yr −1 , sustaining the CO 2 uptake in the surface ocean This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 , which is faster than in other deep oceans
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...