ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • Blackwell Science Ltd  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 17 (2005), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Structural softening is a decrease in the amount of stress needed to deform the lithosphere at a particular rate because of its structural reorganization while all true rheological properties remain constant. Structural softening is fundamentally different than material softening, where the decrease in stress is generated by a change in rheological properties with progressive deformation, such as grain size reduction resulting from large shearing strain. We study structural softening generated by folding of the crust-mantle boundary, which is a structural instability that inevitably develops during compression of the mechanically layered lithosphere. For ductile rheologies, the stress decrease represents a decrease of the effective lithospheric viscosity, which is proportional to the ratio of stress to lithospheric shortening strain rate. We present analytical and numerical results quantifying the decrease in stress and effective viscosity that occur during shortening at a constant rate. The decrease in effective viscosity can be up to 10-fold.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 115 (B11). B11413.
    Publication Date: 2019-09-23
    Description: Archean cratons belong to the most remarkable features of our planet since they represent continental crust that has avoided reworking for several billions of years. Even more, it has become evident from both geophysical and petrological studies that cratons exhibit deep lithospheric keels which equally remained stable ever since the formation of the cratons in the Archean. Dating of inclusions in diamonds from kimberlite pipes gives Archean ages, suggesting that the Archean lithosphere must have been cold soon after its formation in the Archean (in order to allow for the existence of diamonds) and must have stayed in that state ever since. Yet, although strong evidence for the thermal stability of Archean cratonic lithosphere for billions of years is provided by diamond dating, the long-term thermal stability of cratonic keels was questioned on the basis of numerical modeling results. We devised a viscoelastic mantle convection model for exploring cratonic stability in the stagnant lid regime. Our modeling results indicate that within the limitations of the stagnant lid approach, the application of a sufficiently high temperature-dependent viscosity ratio can provide for thermal craton stability for billions of years. The comparison between simulations with viscous and viscoelastic rheology indicates no significant influence of elasticity on craton stability. Yet, a viscoelastic rheology provides a physical transition from viscously to elastically dominated regimes within the keel, thus rendering introduction of arbitrary viscosity cutoffs, as employed in viscous models, unnecessary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...