ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-10-08
    Description: This study presents the data on 129I and 236U concentrations in seawater samples and sea ice cores obtained during two expeditions to the Arctic Ocean that took place onboard R/V Polarstern (PS94) and R/V Lance (N-ICE2015) in summer 2015. Carbon-14 was also measured in the deep water samples from the Nansen, Amundsen, and Makarov Basins. The main goal was to investigate the distribution of 129I and 236U in a transect from the Norwegian Coast to the Makarov Basin to fully exploit the potential of combining 129I and 236U as a dual tracer to track Atlantic waters throughout the Arctic Ocean. The use of the 129I/236U and 236U/238U atom ratios allowed identifying a third Atlantic branch that enters the Arctic Ocean (the Arctic Shelf Break Branch) following the Norwegian Coastal Current that carries a larger proportion of the European reprocessing plants signal compared to Fram Strait Branch Water and Barents Sea Branch Water. The combination of 129I and 236U also allowed quantifying the different proportions of the La Hague stream, the Scottish stream, and Atlantic waters forming the three Atlantic branches of the Arctic Ocean Boundary Current. The results show that the 129I/236U atom ratio can now be used to identify the different Atlantic branches entering the Arctic Ocean. New input functions for 129I, 236U, and 129I/236U have also been described for each branch, which can be further used for calculation of transit time distributions of Atlantic waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-23
    Description: The precise determination of radium‐226 (226Ra) in environmental samples is challenging due to its low concentration. Seawater typically contains between 0.03 and 0.1 fg g−1 226Ra. Thus, this work addresses the need for an easy and precise methodology for 226Ra determination in seawater that may be applied routinely to a large number of samples. For this reason, a new analytical approach has been developed for the quantification of 226Ra in seawater via inductively coupled plasma mass spectrometry (ICP‐MS). Analysis by single collector sector‐field ICP‐MS was shown to be convenient and reliable for this purpose once potential molecular interferences were excluded by a combination of chemical separation and intermediate mass resolution analysis. The proposed method allows purification of Ra from the sample matrix based on preconcentration by MnO2 precipitation, followed by two‐column separation using a cation exchange resin and an extraction chromatographic resin. The method can be applied to acidified and unacidified seawater samples. The recovery efficiency for Ra ranged between 90% and 99.8%, with precision of 5%, accuracy of 95.7% to 99.9%, and a detection limit of 0.033 fg g−1 (referring to the original concentration of seawater). The method has been applied to measure 226Ra concentrations from the North Sea and validated by analyzing samples from the central Arctic (GEOTRACES GN04). Samples from a crossover station (from GEOTRACES GN04 and GEOTRACES GN01 research cruises) were analyzed using alternative methods, and our results are in good agreement with published values.
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Keywords: 551.9 ; seawater ; radium-226 determination
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...