ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Louis University
    In:  report for Department of Civil Engineering, University of Kentucky, Lexington, Hamburg, Louis University, vol. C 560, 183 pp., no. GL-TR-89-0143, pp. 68-71, (ISBN 3-933346-037)
    Publication Date: 1988
    Keywords: Seismology ; Strong motions
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events,MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q( f ) = 310 f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bilinear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used σ = 50MPa. A regional distanceindependent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.
    Description: Published
    Description: 315-333
    Description: JCR Journal
    Description: reserved
    Keywords: Attenuation ; Ground motion ; Western Alps ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-24
    Description: The aim of this study is to test the stability of moment tensor solutions for crustal earthquakes in the Calabro-Peloritan area (southern Italy). We used waveforms recorded by the Italian National Seismic Network managed by the Istituto Nazionale di Geofisica e Vulcanologia and the CAT-SCAN (Calabria Apennine Tyrrhenian - Subduction Collision Accretion Network) project. We computed the moment tensor solutions using the Cut And Paste (CAP) method. The technique allows the determination of the source depth, moment magnitude and focal mechanisms using a grid search technique. For the earthquakes investigated, we tried different station distributions and different velocity models. Results were also checked by computing the moment tensor solutions using the SLUMT grid-search method. Both methods (CAP and SLUMT) allow time shifts between synthetic and observed data in order to reduce the dependence of the solution on the assumed velocity model and on earthquake location errors. Comparisons have been made with the available published solutions. The final focal mechanisms were robustly determined. We show that the application of the CAP and SLUMT methods can provide good-quality solutions in a magnitude range not properly represented in the Italian national earthquake catalogues, and where the solutions estimated from Ponset polarities are often poorly constrained.
    Description: Published
    Description: 283-298
    Description: JCR Journal
    Description: open
    Keywords: moment tensor ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-25
    Description: We present rupture details of the Mw 6.3 April 6, 2009 L’Aquila earthquake derived by back‐projecting teleseismic P waves. This technique has previously been applied to large magnitude earthquakes, but this is the first application to a moderate size event. We processed vertical‐component seismograms for 60 broadband stations obtained from the Incorporated Research Institutions for Seismology (IRIS) data center. The traces were aligned and normalized using a multi‐channel cross‐correlation algorithm and 4th root stacking was used to image the rupture. We found that the L’Aquila earthquake ruptured towards the south and that a second discrete pulse of energy occurred 20–25 km east of the epicenter about 17–18 s after the nominal origin time. The spatial extent of the rupture image correlates well with a post‐seismic survey of damage in the region. Because the technique is potentially very fast (images can be produced within 20–30 minutes of the origin time), it may be useful to governmental agencies tasked with emergency response and rescue.
    Description: Published
    Description: L03301
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: L'AQUILA EARTHQUAKE ; BACK_PROJECTION ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-10-10
    Description: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events, MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996-2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q(f) = 310 f0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bi-linear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used Δσ = 50 MPa. A regional distance-independent attenuation parameter is obtained (K0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory. © Springer Science+Business Media, Inc. 2006.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...