ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (104)
  • Copernicus  (7)
  • AGU  (2)
Collection
Keywords
  • 1
    Publication Date: 2017-10-26
    Description: We describe the evolution of coastal retrogressive thaw slumps (RTSs) between 1952 and 2011 along the Yukon Coast, Canada, and provide the first estimate of the contribution of RTSs to the nearshore organic carbon budget in this area. We 1) monitor the evolution of RTSs during the periods 1952–1972 and 1972–2011; 2) calculate the volume of material eroded and stocks of organic carbon (OC) mobilized through slumping – including soil organic carbon (SOC) and dissolved organic carbon (DOC) – and 3) measure the OC fluxes mobilized through slumping between 1972 and 2011. We identified 15 RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied a spline interpolation on an airborne LiDAR dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs between 1952 and 2011. In the study area, RTSs displaced at least 8600 × 103 m3 of material, with 53 % of ice. We estimated that slumping mobilized 81 900 × 103 kg of SOC and 156 × 103 kg of DOC. Since 1972, 17 % of the RTSs 20 have displaced 8.6 × 103 m3/yr of material, with an average OC flux of 82.5 ×103 kg/yr. This flux represents 0.3 % of the OC flux released from coastal retreat; however RTSs have a strong impact on the transformation of OC in the coastal fringe.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-29
    Description: Climate change is affecting the rate of carbon cycling, particularly in the Arctic. Permafrost degradation through deeper thaw and physical disturbances results in the release of carbon dioxide and methane to the atmosphere and to an increase in lateral dissolved organic matter (DOM) fluxes. Whereas riverine DOM fluxes of the large Arctic rivers are well assessed, knowledge is limited with regard to small catchments that cover more than 40 % of the Arctic drainage basin. Here, we use absorption measurements to characterize changes in DOM quantity and quality in a low Arctic (Herschel Island, Yukon, Canada) and a high Arctic (Cape Bounty, Melville Island, Nunavut, Canada) setting with regard to geographical differences, impacts of permafrost degradation, and rainfall events. We find that DOM quantity and quality is controlled by differences in vegetation cover and soil organic carbon content (SOCC). The low Arctic site has higher SOCC and greater abundance of plant material resulting in higher chromophoric dissolved organic matter (cDOM) and dissolved organic carbon (DOC) than in the high Arctic. DOC concentration and cDOM in surface waters at both sites show strong linear relationships similar to the one for the great Arctic rivers. We used the optical characteristics of DOM such as cDOM absorption, specific ultraviolet absorbance (SUVA), ultraviolet (UV) spectral slopes (S275–295), and slope ratio (SR) for assessing quality changes downstream, at base flow and storm flow conditions, and in relation to permafrost disturbance. DOM in streams at both sites demonstrated optical signatures indicative of photodegradation downstream processes, even over short distances of 2000 m. Flow pathways and the connected hydrological residence time control DOM quality. Deeper flow pathways allow the export of permafrost-derived DOM (i.e. from deeper in the active layer), whereas shallow pathways with shorter residence times lead to the export of fresh surface- and near-surface-derived DOM. Compared to the large Arctic rivers, DOM quality exported from the small catchments studied here is much fresher and therefore prone to degradation. Assessing optical properties of DOM and linking them to catchment properties will be a useful tool for understanding changing DOM fluxes and quality at a pan-Arctic scale.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-27
    Description: Permafrost landscapes are changing around the Arctic in response to climate warming, with coastal erosion being one of the most prominent and hazardous features. Using drone platforms, satellite images, and historic aerial photographs, we observed the rapid retreat of a permafrost coastline on Qikiqtaruk – Herschel Island, Yukon Territory, in the Canadian Beaufort Sea. This coastline is adjacent to a gravel spit accommodating several culturally significant sites and is the logistical base for the Qikiqtaruk – Herschel Island Territorial Park operations. In this study we sought to (i) assess short-term coastal erosion dynamics over fine temporal resolution, (ii) evaluate short-term shoreline change in the context of long-term observations, and (iii) demonstrate the potential of low-cost lightweight unmanned aerial vehicles (“drones”) to inform coastline studies and management decisions. We resurveyed a 500 m permafrost coastal reach at high temporal frequency (seven surveys over 40 d in 2017). Intra-seasonal shoreline changes were related to meteorological and oceanographic variables to understand controls on intra-seasonal erosion patterns. To put our short-term observations into historical context, we combined our analysis of shoreline positions in 2016 and 2017 with historical observations from 1952, 1970, 2000, and 2011. In just the summer of 2017, we observed coastal retreat of 14.5 m, more than 6 times faster than the long-term average rate of 2.2±0.1 m a−1 (1952–2017). Coastline retreat rates exceeded 1.0±0.1 m d−1 over a single 4 d period. Over 40 d, we estimated removal of ca. 0.96 m3 m−1 d−1. These findings highlight the episodic nature of shoreline change and the important role of storm events, which are poorly understood along permafrost coastlines. We found drone surveys combined with image-based modelling yield fine spatial resolution and accurately geolocated observations that are highly suitable to observe intra-seasonal erosion dynamics in rapidly changing Arctic landscapes.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-21
    Description: Climate change is an important control of carbon cycling, particularly in the Arctic. Permafrost degradation through deeper thaw and physical disturbances result in the release of carbon dioxide and methane to the atmosphere and to an increase in riverine dissolved organic matter (DOM) fluxes. Whereas riverine DOM fluxes of the large Arctic rivers are well assessed, knowledge is limited with regard to small catchments that cover more than 40 % of the Arctic drainage basin. Here, we use absorption measurements to characterize changes in DOM quantity and quality in a Low Arctic (Herschel Island, Yukon, Canada) and a High Arctic (Cape Bounty, Melville Island, Nunavut, Canada) setting with regard to geographical differences, impacts of permafrost degradation and rainfall events. We find that DOM quantity and quality is controlled by differences in vegetation cover and soil organic carbon content. The Low Arctic site has higher SOCC and greater abundance of plant material introducing higher lignin concentrations into the aquatic system and resulting in a stronger color of DOM than in the High Arctic. There is a strong relationship between dissolved organic carbon (DOC) concentration and absorption characteristics (cDOM) for surface waters at both sites similar to the one for the great Arctic rivers. We used the optical characteristics of DOM such as cDOM absorption, Specific UltraViolet Absorbance SUVA, UltraViolet UV Slope, Slope Ratio for assessing quality changes downstream, at baseflow and stormflow conditions and in relation to permafrost disturbance. DOM in streams at both sites demonstrated optical signatures indicative of photodegradation downstream processes, even over short distances of 2000 m. It was determined that flow pathways and the connected hydrological residence time control DOM quality. Deeper flow pathways allow the export of permafrost-derived DOM, whereas shallow pathways with shorter residence times lead to the export of fresh near-surface derived DOM. Compared to the large Arctic rivers, DOM quality exported from the small catchments studied here is much fresher and therefore prone to degradation. This work shows that optical properties of DOM will be a useful tool for understanding DOM sources and quality at a pan-Arctic scale.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-12
    Description: Permafrost landscapes are changing around the Arctic in response to climate warming, with coastal erosion being one of the most prominent and hazardous features. Using drone platforms, satellite images and historic aerial photos, we observed the rapid retreat of a permafrost coastline on Qikiqtaruk–Herschel Island, Yukon Territory, in the Canadian Beaufort Sea. Erosion of this coast increasingly threatens the settlement located on the Kuvluraq–Simpson Point gravel spit. This spit accommodates several culturally significant sites and is the logistical base for the Qikiqtaruk–Herschel Island Territorial Park operations. The objectives of this study were to demonstrate the effective use of low-cost lightweight drones for: (i) assessing short-term coastal erosion dynamics over fine temporal resolution, (ii) evaluating short-term change detection in the context of long-term observations of shoreline change, and (iii) demonstrating the potential of these measurement tools for park management and decision makers. Using drones, we resurveyed a 500 m permafrost coastal reach at high temporal frequency (seven surveys over 40 days in 2017). The observed intra-seasonal shoreline changes were related to meteorological and oceanographic variables to understand intra-seasonal erosion dynamics. To put our short-term observations into historical context, we integrated analysis of shoreline positions in 2016 and 2017 with historical observations from 1952, 1970, 2000, and 2011. We found drone surveys analysed with image-based modelling yield fine-grain and accurately geolocated observations that are highly suitable to observe intra-seasonal erosion dynamics. In 2017, we observed coastal retreat of 14.5 m a−1, more than six times faster than the long-term average rate of 2.2 ± 0.2 m a−1 (1952–2017). Over a single 4 day period, coastline retreat exceeded 1 ± 0.1 m d−1. Our findings highlight the episodic nature of shoreline change, which is poorly understood along permafrost coastlines. We conclude that the data available from drones is an effective tool to understand better the mechanistic short-term controls on coastal erosion dynamics and thus long-term coastline change, and has strong potential to support local management decisions regarding coastal settlements in rapidly changing Arctic landscapes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-13
    Description: Retrogressive thaw slumps (RTSs) are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC) budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1) describe the evolution of RTSs between 1952 and 2011; (2) calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC) and dissolved organic carbon (DOC); and (3) estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr−1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-14
    Keywords: Aluminium; Automatic water sampler (ISCO 3700); AWI_PerDyn; AWS_ISCO; Barium 2+; Bicarbonate ion; Bromide; Calcium; Carbon, organic, dissolved; Chloride; Conductivity, electrical; DATE/TIME; Fluoride; Herschel Island, Yukon Territory, Canada; Ice_Creek_West; Iron; Magnesium; Manganese 2+; Nitrate; Permafrost Research (Periglacial Dynamics) @ AWI; pH; Phosphorus; Potassium; Sample code/label; Silicon; Sodium; Strontium 2+; Sulfate
    Type: Dataset
    Format: text/tab-separated-values, 1260 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-14
    Keywords: Aluminium; Automatic water sampler (ISCO 3700); AWI_PerDyn; AWS_ISCO; Barium 2+; Bicarbonate ion; Bromide; Calcium; Carbon, organic, dissolved; Chloride; Conductivity, electrical; DATE/TIME; Fluoride; Herschel Island, Yukon Territory, Canada; Ice_Creek_West; Iron; Magnesium; Manganese 2+; Nitrate; Nitrogen, total dissolved; Oxygen saturation; Permafrost Research (Periglacial Dynamics) @ AWI; pH; Phosphate; Phosphorus; Potassium; Sample code/label; Silicon; Sodium; Strontium 2+; Sulfate; Suspended particulate matter
    Type: Dataset
    Format: text/tab-separated-values, 896 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-16
    Keywords: AWI_Envi; AWI_PerDyn; AWI_Perma; File content; File format; File name; File size; Herschel_Island_Watersheds_Survey; MULT; Multiple investigations; Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-16
    Keywords: AWI_Envi; AWI_PerDyn; AWI_Perma; DATE/TIME; Discharge; Herschel Island, Yukon Territory, Canada; Ice_Creek_East; Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Polar Terrestrial Environmental Systems @ AWI
    Type: Dataset
    Format: text/tab-separated-values, 4662 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...