ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • JOHN WILEY & SONS LTD  (2)
  • ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD  (1)
  • American Meteorological Society
  • NATURE PUBLISHING GROUP
  • 1
    Publication Date: 2021-10-20
    Description: MOSES (Modular Observation Solutions for Earth Systems) is a novel observation system that is specifically designed to unravel the impact of distinct, dynamic events on the long-term development of environmental systems. Hydro-meteorological extremes such as the recent European droughts or the floods of 2013 caused severe and lasting environmental damage. Modelling studies suggest that abrupt permafrost thaw events accelerate Arctic greenhouse gas emissions. Short-lived ocean eddies seem to comprise a significant share of the marine carbon uptake or release. Although there is increasing evidence that such dynamic events bear the potential for major environmental impacts, our knowledge on the processes they trigger is still very limited. MOSES aims at capturing such events, from their formation to their end, with high spatial and temporal resolution. As such, the observation system extends and complements existing national and international observation networks, which are mostly designed for long-term monitoring.Several German Helmholtz Association centers have developed this research facility as a mobile and modular “system of systems” to record energy, water, greenhouse gas and nutrient cycles on the land surface, in coastal regions, in the ocean, in polar regions, and in the atmosphere – but especially the interactions between the Earth compartments. During the implementation period (2017-2021), the measuring systems were put into operation and test campaigns were performed to establish event-driven campaign routines. With MOSES’ regular operation starting in 2022, the observation system will then be ready for cross-compartment and cross-discipline research on the environmental impacts of dynamic events.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    In:  EPIC3Estuarine Coastal and Shelf Science, ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
    Publication Date: 2015-04-28
    Description: River estuaries are responsible for high rates of methane emissions to the atmosphere. The complexity and diversity of estuaries require detailed investigation of methane sources and sinks, as well as of their spatial and seasonal variations. The Elbe river estuary and the adjacent North Sea were chosen as the study site for this survey, which was conducted from October 2010 to June 2012. Using gas chromatography and radiotracer techniques, we measured methane concentrations and methane oxidation (MOX) rates along a 60 km long transect from Cuxhaven to Helgoland. Methane distribution was influenced by input from the methane-rich mouth of the Elbe and gradual dilution by methane-depleted sea water. Methane concentrations near the coast were on average 30 ± 13 nmol L−1, while in the open sea, they were 14 ± 6 nmol L−1. Interestingly, the highest methane concentrations were repeatedly detected near Cuxhaven, not in the Elbe River freshwater end-member as previously reported. Though, we did not find clear seasonality we observed temporal methane variations, which depended on temperature and presumably on water discharge from the Elbe River. The highest MOX rates generally coincided with the highest methane concentrations, and varied from 2.6 ± 2.7 near the coast to 0.417 ± 0.529 nmol L−1 d−1 in the open sea. Turnover times varied from 3 to 〉1000 days. MOX rates were strongly affected by methane concentration, temperature and salinity. We ruled out the supposition that MOX is not an important methane sink in most of the Elbe estuary and adjacent German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-15
    Description: Large amounts of the greenhouse gas methane are released from the seabed but liberation of methane to the atmosphere is mitigated by aerobic methanotrophs in the water column. The size and activity of methanotrophic communities are thought to be mainly determined by nutrient and redox dynamics, but little is known about the effects of water mass transport. Here, we show that cold bottom waters at methane seeps west off Svalbard, which contained a large number of aerobic methanotrophs, were rapidly displaced by warmer waters with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current strongly reduced methanotrophic activity. Currents are common at many methane seeps and could thus be a globally important control on methane oxidation in the water column.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-16
    Description: This paper describes two gas‐emission craters (GECs) in permafrost regions of the Yamal and Gydan peninsulas. We show that in three consecutive years after GEC formation (2014–2017), both morphometry and hydrochemistry of the inner crater lakes can become indistinguishable from other lakes. Craters GEC‐1 and AntGEC, with initial depths of 50–70 and 15–19 m respectively, have transformed into lakes 3–5 m deep. Crater‐like depressions were mapped in the bottom of 13 out of 22 Yamal lakes. However, we found no evidence that these depressions could have been formed as a result of gas emission. Dissolved methane (dCH4) concentration measured in the water collected from these depressions was at a background level (45 ppm on average). Yet, the concentration of dCH4 from the near‐bottom layer of lake GEC‐1 was significantly higher (824–968 ppm) during initial stages. We established that hydrochemical parameters (dissolved organic carbon, major ions, isotopes) measured in GEC lakes approached values measured in other lakes over time. Therefore, these parameters could not be used to search for Western Siberian lakes that potentially resulted from gas emission. Temperature profiles measured in GEC lakes show that the water column temperatures in GEC‐1 are lower than in Yamal lakes and in AntGEC – close to values of Gydan lakes. Given the initial GEC depth 〉 50 m, we suggest that at least in GEC‐1 possible re‐freezing of sediments from below might take place. However, with the present data we cannot establish the modern thickness of the closed talik under newly formed GEC lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-21
    Description: This paper describes two gas‐emission craters (GECs) in permafrost regions of the Yamal and Gydan peninsulas. We show that in three consecutive years after GEC formation (2014–2017), both morphometry and hydrochemistry of the inner crater lakes can become indistinguishable from other lakes. Craters GEC‐1 and AntGEC, with initial depths of 50–70 and 15–19 m respectively, have transformed into lakes 3–5 m deep. Crater‐like depressions were mapped in the bottom of 13 out of 22 Yamal lakes. However, we found no evidence that these depressions could have been formed as a result of gas emission. Dissolved methane (dCH4) concentration measured in the water collected from these depressions was at a background level (45 ppm on average). Yet, the concentration of dCH4 from the near‐bottom layer of lake GEC‐1 was significantly higher (824–968 ppm) during initial stages. We established that hydrochemical parameters (dissolved organic carbon, major ions, isotopes) measured in GEC lakes approached values measured in other lakes over time. Therefore, these parameters could not be used to search for Western Siberian lakes that potentially resulted from gas emission. Temperature profiles measured in GEC lakes show that the water column temperatures in GEC‐1 are lower than in Yamal lakes and in AntGEC – close to values of Gydan lakes. Given the initial GEC depth 〉 50 m, we suggest that at least in GEC‐1 possible re‐freezing of sediments from below might take place. However, with the present data we cannot establish the modern thickness of the closed talik under newly formed GEC lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...