ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ACADEMIC PRESS INC ELSEVIER SCIENCE  (1)
  • BioMed Central  (1)
  • Inter Research  (1)
  • 1
    Publication Date: 2014-07-02
    Print ISSN: 1438-387X
    Electronic ISSN: 1438-3888
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-22
    Description: We analysed carbon (δ13C) and nitrogen (δ15N) isotope ratios of organisms and biogenic tissues from Comau Fjord (southern Chile) to characterise benthic food webs and spatial isotope variability in this ecosystem. These values were intended to serve as a baseline for detecting anthropogenic impacts on Patagonian marine fjord ecosystems in later studies. Benthic macro algae and invertebrate suspension feeders were primarily considered, with some supplementary data from cyanobacteria, plankton, fish, and coastal vertebrates. Six depth transects typified the lateral salinity gradients from the innermost part of the fjord to its mouth, as well as the vertical density gradients caused by freshwater inflow. Carbon isotope signatures indicated predominant consumption of either CO2 or HCO3– for benthic macroalgal. All CO2 users belonged to rhodophytes. The δ15N values of benthic macrophytes decreased with decreasing salinity, both vertically and along the fjord axis. This implies the influence of 15N-poor terrestrial dissolved inorganic nitrogen (DIN) at these sites. Enhanced influence of freshwater influx also lowered N contents and increased C/N ratios in algal tissues. Exceptionally high macroalgae δ15N values at the seabird and sealion colony Isla Liliguapi point to animal faeces as an additional source of 15N-enriched DIN. Thus, DIN sources not originating from the open sea are additionally utilised by the benthic macroalgae in the fjord. In contrast, mussel tissue from the same locations was much less influenced by varying DIN sources. Among benthic suspension feeders, mytilids (Mytilus chilensis, Aulacomya ater) had the lowest and scleractinian corals (Desmophyllum dianthus) had the highest δ15N values, and Balanidae (Elminius kingii) and gorgonians (Primnoella sp.) showed values in between. The preference for specific size classes of marine particulate organic matter (seston) as food serves as an explanation for the δ15N variability observed between the different benthic suspension feeders.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ACADEMIC PRESS INC ELSEVIER SCIENCE
    In:  EPIC3Journal of Structural Biology, ACADEMIC PRESS INC ELSEVIER SCIENCE, 207(2), pp. 136-157, ISSN: 1047-8477
    Publication Date: 2020-06-19
    Description: To understand mineral transport pathways for shell secretion and to assess differences in cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-substituted samples from the commissure, central shell portions and from puncta. Imaging results are complemented with morphometric evaluations of volume fractions of membrane-bound organelles. At the commissure the OME consists of several layers of cells. These cells form oblique extensions that, incross-section, are round below the primary layer and flat underneath fibres. At the commissure the OME is multi-cell layered, in central shell regions it is single-cell layered. When actively secreting shell carbonate extrapallial space is lacking, because OME cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum and Golgi apparatus there is no difference. FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and developing fibres. In addition, there is no indication for an amorphous precursor within fibres when these are in active secretion mode. Accordingly, our results do not support transport of minerals by vesicles from cells to sites of miner-alization, rather by transfer of carbonate ions via transport mechanisms associated with OME cell membranes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...