ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-16
    Description: Abstract 2998 Introduction: GvHD remains the most deadly complication of HSCT despite current prevention strategies. To address the unmet need for better GvHD control, we have created a non-human primate (NHP) model with which to rigorously test mechanism and efficacy of novel therapeutics. In this study, we determined whether a novel combination of mTOR inhibition (with sirolimus) and CD28:CD80/86 costimulation blockade (with belatacept) could control GvHD. Here we show for the first time that these two agents combine synergistically to prevent both the clinical and immunologic manifestations of primate aGvHD. Methods: Rhesus macaque recipients were irradiated (9.6 Gy in 2 fractions at 7cGy/min), and then transplanted with G-CSF-mobilized PBSC from a haplo-identical donor (1–5×108 TNC/kg). Recipients were treated with either sirolimus alone (n = 4, troughs targeted at 5–10 ng/mL), belatacept alone (receiving weekly doses of 20 mg/kg), or combination therapy. Clinical GvHD was monitored using our previously described NHP grading scale (Miller et al., Blood 2010), and multiparameter flow cytometric analysis was performed. Results: Untreated controls (n = 5) developed rapid, severe histopathologically-proven aGvHD and succumbed rapidly (MST = 7 days). Recipients treated with either sirolimus or belatacept alone were partially protected from the clinical manifestations of GvHD. Sirolimus-treated recipients (n = 6) developed predominantly GI disease (with diarrhea but no elevation of bilirubin) and had an MST of 14 days (Figure 1). Recipients treated with belatacept alone (n = 3) developed primarily liver aGvHD (bilirubin rapidly rising to 6–30 × normal with histologically-confirmed lymphocytic infiltration) and an MST of 11 days. In striking contrast, recipients treated with combined sirolimus + belatacept (n = 5) demonstrated neither uncontrolled diarrhea nor hyperbilirubinemia at the timed terminal analysis (1 month post-transplant). We employed multiparameter flow cytometry to determine the immunologic consequences of sirolimus and belatacept on T cell proliferation (using Ki-67 expression) and cytotoxity (using granzyme B expression). We found that the clinical synergy observed with combined therapy was recapitulated immunologically. Thus, while untreated aGvHD was associated with rampant CD8+ proliferation (with 83 +/− 14% Ki-67+ CD8+ vs 4.7 +/− 0.6% pre-transplant), sirolimus or belatacept as monotherapy both partially controlled proliferation (35 +/− 3% and 65 +/− 23% Ki-67+ CD8+ with sirolimus or belatacept, respectively). Combined sirolimus + belatacept dramatically reduced proliferation (to 8 +/− 3%, favorably comparing with 13% Ki-67+ CD8+ T cells using standard Calcineurin Inhibitor/Methotrexate (CNI/MTX) prophylaxis). Sirolimus and belatacept both also partially controlled GvHD-related T cell cytotoxicity. Thus, while untreated aGvHD was associated with excessive granzyme B expression in CD8+ T cells (82 +/− 2% granzyme Bvery high CD8+ cells vs 0.3 +/− 0.2% pre-transplant) sirolimus or belatacept monotherapy also partially controlled cytotoxicity (8 +/− 1% and 35 +/− 1% granzyme Bvery high with sirolimus or belatacept, respectively). Combination therapy dramatically reduced the proportion of these cells, to 1.5 +/− 0.8 % granzyme Bvery high, favorably comparing with 4% granzyme Bvery high using CNI/MTX. The ability of sirolimus, belatacept, or the combination to control Ki-67 and Granzyme B expression closely correlated with survival (Figure 2A, B) supporting a pathogenic role for these highly proliferative and cytotoxic cells in aGvHD pathology. Moreover, significant co-expression of granzyme B in the Ki-67+ cells was observed (Figure 2C) suggesting that dual-positive Ki-67/Granzyme B cells may mark a pathogenic population, amenable to tracking in the peripheral blood. Implications: These results reveal a previously undiscovered synergy between sirolimus and belatacept in the control of primate aGvHD, and provide support for future clinical investigation of this novel prevention strategy. They also identify CD8+/Ki-67+/Granzyme Bvery high dual-positive T cells as a potentially sensitive biomarker of GvHD pathogenesis, amenable to monitoring in either the blood or in GvHD target organs. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-18
    Description: Abstract 1008 Regulatory T cells (Tregs) have been shown to be potent inhibitors of autoimmunity, and to be capable of suppressing alloimmune responses that occur during both allograft rejection and graft-versus host disease. However, they have yet to gain widespread use clinically, due in part to the fact that it remains extremely costly and difficult to produce them in sufficient numbers and with sufficient suppressive capacity to significantly impact the alloimmune response. Here we have used our established non-human primate model to demonstrate that significant Treg expansion (up to 600-fold in 21 days) can be maintained, and suppressive capacity enhanced by exposing Treg cultures to a short burst of sirolimus at the end of the culture period. Using a highly sensitive and specific in vitro CFSE-MLR assay we show that Tregs significantly inhibit allo-proliferation of multiple T cell subpopulations including both CD4+ and CD8+ T cells (3.2 and 2.7-fold inhibition of proliferation, respectively), as well as their CD28+CD95+ and CD28-CD95+ subpopulations (2.2 and 2.1 and 1.9 and 2.7-fold inhibition of CD4+ and CD8+ subpopulation proliferation, respectively). Tregs were able to combine in vitro with the newly FDA-approved CTLA4-Ig analog belatacept to enhance the inhibition of alloproliferation that occurred with either agent alone (4.8-fold inhibition of CD8 T cell proliferation with Tregs + belatacept, compared to 3.0-fold or 1.9-fold inhibition of CD8 T cell proliferation with Tregs or belatacept alone, respectively). Importantly, we have found that the suppressive activity of ex-vivo expanded Tregs could be further enhanced by pulsing with sirolimus. Thus, while long-term culture of Tregs in the presence of sirolimus (1–1000 nM) profoundly inhibited Treg expansion (50–800 fold inhibition of expansion when cultured in the presence of 1–1000 nM sirolimus), a 48 hour pulse of sirolimus (100 nM) on days 20–21 of culture completely preserved Treg yields while doubling their suppressive function against CD8 proliferation when compared to unpulsed Tregs, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-16
    Description: Abstract 1888 Introduction: There is a critical unmet need to devise effective strategies to prevent GvHD. However, the best combinatorial therapies remain undetermined, and the identification of new targeted approaches to GvHD prevention remains a challenge. To address this, we have developed a genome-wide approach to studying GvHD, using whole-transcriptome analysis of pathogenic T cells in a clinically-relevant non-human primate (NHP) model. Using computational approaches, we have identified, for the first time, the transcriptional networks that drive primate GvHD, and that lead to its partial control with sirolimus. Methods: CD3+/CD20- T cells were purified flow cytometrically from 4 cohorts: (1) Healthy Controls (“HC” n = 15); (2) Recipients of an autologous HSCT (“Auto” n = 3); (3) Haplo-identical allogeneic HSCT recipients without GvHD prophylaxis, who developed histopathologically confirmed severe aGvHD (“GvHD” n = 4); and (4) Allo-HSCT recipients who received sirolimus alone, and were partially protected from aGvHD (“Sirolimus” n = 4). Purification of T cells after allo-HSCT occurred 1–2 weeks post-transplant. RNA was purified (Qiagen), and rhesus macaque-specific Affymetrix Gene Arrays were performed. Computation: Gene array signals were processed and normalized using the Robust Multichip Averaging Method and ComBat. Principal Component Analysis (PCA) was applied to summarize modes of gene array variance. Importantly, PCA revealed that variation was primarily determined by the experimental cohort (Figure 1). This result was critical, and confirmed that transcriptomics could be applied to identify genes and pathways controlling GvHD. Differentially expressed genes (“DE”, fold change 〉 2) were defined between cohorts, yielding unique and overlapping gene signatures. We found that 775 annotated genes were DE between GvHD and HC and 286 were DE between Sirolimus and HC (Figure 2A, B). Importantly, a subset of the GvHD and Sirolimus DE gene sets were overlapping, indicating incomplete control of T cell activation with sirolimus (Figure 2B), and identifying pathways that could be targeted in combination with sirolimus for improved GvHD control. To further define genes by their individual expression profiles using an unbiased approach, we applied Class Neighbor Analysis (GenePattern, Figure 3A). Finally, using Ingenuity Pathway Analysis (IPA) we characterized gene signatures according to molecular pathways (using right-tailed Fisher's Exact test and FDR correction, Figure 3B). Results: T cells from animals with severe aGvHD demonstrated transcriptional signs of rampant proliferation and cytotoxicity as well as potentially counter-regulatory cell death pathways. IPA identified highly statistically significant upregulation of Cell Cycle and Cellular Movement networks (Figure 3B, p〈 0.001) as well as Cell Trafficking and Inflammatory Response Networks (Figure 3B, p 〈 0.001). These networks contained some expected genes and some surprises. Thus, as previously documented, GvHD was associated with upregulation of JAK and IFN signaling (p 〈 0.001). Unexpectedly, GvHD was also associated with upregulation of the Sonic Hedgehog and Aurora Kinase A Pathways (p 〈 0.01). Both of these represent targetable pathways for which novel therapeutics are currently available. Sirolimus resulted in significantly different gene expression patterns compared to uncontrolled GvHD. This included partial downregulation of the proliferation marker Ki-67 and the cytotoxicity gene, Granzyme B. However, there were many genes, pathways and networks that were shared between the Sirolimus and GvHD cohorts. These prominently included upregulation of the FOXM1 and IRF8 transcription factors, involved in cell cycle progression (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2018-12-06
    Description: During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the Ocean Atmosphere Carbon Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the Global Ocean Data Analysis Project (GLODAP). Results were merged into a common format data set, segregated by ocean. For comparison purposes, each ocean data set includes a small number of high‐quality historical cruises. The data were subjected to rigorous quality control procedures to eliminate systematic data measurement biases. The calibrated 1990s data were used to estimate anthropogenic CO2, potential alkalinity, CFC watermass ages, CFC partial pressure, bomb‐produced radiocarbon, and natural radiocarbon. These quantities were merged into the measured data files. The data were used to produce objectively gridded property maps at a 1° resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients. The mapped fields are interpreted as an annual mean distribution in spite of the inaccuracy in that assumption. Both the calibrated data and the gridded products are available from the Carbon Dioxide Information Analysis Center. Here we describe the important details of the data treatment and the mapping procedure, and present summary quantities and integrals for the various parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 226-228, doi:10.5670/oceanog.2015.45.
    Description: Ocean acidification (OA) refers to the general decrease in pH of the global ocean as a result of absorbing anthropogenic CO2 emitted in the atmosphere since preindustrial times (Sabine et al., 2004). There is, however, considerable variability in ocean acidification, and many careful measurements need to be made and compared in order to obtain scientifically valid information for the assessment of patterns, trends, and impacts over a range of spatial and temporal scales, and to understand the processes involved. A single country or institution cannot undertake measurements of worldwide coastal and open ocean OA changes; therefore, international cooperation is needed to achieve that goal. The OA data that have been, and are being, collected represent a significant public investment. To this end, it is critically important that researchers (and others) around the world are easily able to find and use reliable OA information that range from observing data (from time-series moorings, process studies, and research cruises), to biological response experiments (e.g., mesocosm), data products, and model output.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...