ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.
    Keywords: Aerodynamics
    Type: OTN-035236 , OTN-BIBL-AGARD-AR-303-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: Mars Global Surveyor (MGS) successfully completed its first phase of aerobraking in early 1998 and is the rst planetary mission to use aerobraking as a primary means of customizing its orbit to achieve its mission objectives. The aerobraking requirements together with post-launch anomalies presented a unique challenge to provide accurate predictions of the aerothermodynamic environment of the spacecraft in the rare transitional flow regime. Direct Simulation Monte Carlo (DSMC) and free molecular techniques were used to provide heating and aerodynamic predictions and to investigate a variety of rarefied flow phenomena across the regime; MGS is the first major planetary mission in which rare flow predictions have played such a critical role all the way through design, mission planning, and operational phases. This paper summarizes these studies with emphasis on transitional-flow and gas-surface interaction phenomena.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: An investigation of the isothermal wake-flow characteristics of several flame-holder shapes was carried out in a 4- by 4-inch flow chamber. The effects of flame-holder-shape changes on the characteristics of the Karman vortices and thus on the recirculation zones to which experimenters have related the combustion process were obtained for several flame holders. The results may furnish a basis of correlation, of combustion efficiency and stability for similarly shaped flame holders in combustion studies. Values of the spacing ratio-(ratio of lateral spacing to longitudinal spacing of vortices] obtained for the various shapes approximated the theoretical value of 0.36 given by the Karman stability analysis. Variations in vortex strength of more than 200 percent and in frequency of more than 60 percent were accomplished by varying flame-holder shape. A maximum increase in the recirculation parameter of 56 percent over that for a conventional V-gutter was also obtained. Varying flameholder shape and size enables the designer to select many schedules of variations in vortex strength and frequency- not obtainable by changing size only and may make it possible to approach theoretical maximum vortex strength for any given frequency.
    Keywords: Aerodynamics
    Type: NACA-RM-E51K07 , E-2403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.
    Keywords: Aerodynamics
    Type: NF1676L-15676 , AIAA Fluid Dynamics Conference and Exhibit; Jun 24, 2013 - Jun 27, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: A wind tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing capability. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at momentum coefficients (Cm) from 0.0 to 0.12. Test data were acquired at Mach numbers of 0.3, 0.5, 0.7, 0.8, and 0.84 at Reynolds numbers per foot of 2.43 x 105 to 1.05 x 106. For a transonic condition, (Mach = 0.8 at alpha = 3 degrees), it was generally found the smaller slot and larger Coanda surface combination was overall more effective than other slot/Coanda surface combinations. Lower surface blowing was not as effective as the upper surface blowing over the same range of momentum coefficients. No appreciable Coanda surface, slot height, or slot blowing position preference was indicated transonically with the dual slot blowing.
    Keywords: Aerodynamics
    Type: NASA/TM-2005-213545 , L-19058
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.
    Keywords: Aerodynamics
    Type: NASA/TM-2001-211263 , NAS 1.15:211263 , L-18133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch vehicle stage return, thus making ideas reality. These paradigm shifts include the technology maturation of advanced flexible thermal protection materials onto mid lift-to-drag ratio entry vehicles, the development of integrated supersonic aero-propulsive maneuvering, and the implementation of advanced asymmetric launch shrouds. These paradigms have significant overlap with launch vehicle stage return already being developed by the Air Force and several commercial space efforts. Completing the realization of these combined paradigms holds the key to a high-performing entry vehicle system capability that fully leverages multiple technology benefits to accomplish NASA's Exploration missions to atmospheric planetary destinations.
    Keywords: Aerodynamics
    Type: JSC-CN-26581 , Concepts and Approaches for Mars Exploration; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.
    Keywords: Aerodynamics
    Type: AIAA Journal; 36; 8; 1439-1445
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Circulation control is a viable active flow control approach that can be used to meet the NASA Subsonic Fixed Wing project s Cruise Efficient Short Take Off and Landing goals. Currently, circulation control systems are primarily designed using empirical methods. However, large uncertainty in our ability to predict circulation control performance has led to the development of advanced CFD methods. This paper provides an overview of a systematic approach to developing CFD tools for basic and advanced circulation control applications. This four-step approach includes "Unit", "Benchmar", "Subsystem", and "Complete System" experiments. The paper emphasizes the ongoing and planned 2-D and 3-D physics orientated experiments with corresponding CFD efforts. Sample data are used to highlight the challenges involved in conducting circulation control computations and experiments.
    Keywords: Aerodynamics
    Type: 2008 International Powered Lift Conference; Jul 22, 2008 - Jul 24, 2008; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...