ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A three-dimensional investigation of straight-sided-profile plain ailerons on a wing with 30 degrees and 45 degrees of sweepback and sweepforward was made in a high-speed wind tunnel for aileron deflections from -10 degrees to 10 degrees and at Mach numbers from 0.60 to 0.96. Wing configurations of 30 degrees generally reduced the severity of the large changes in rolling-moment and aileron hinge-moment coefficients experienced by the upswept wing configurations as the result of compression shock and extended to higher Mach numbers the speeds at which such changes occurred.
    Keywords: Aerodynamics
    Type: NACA-RM-L7I15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Availability data obtained on SNB-1 trainer-class airplanes were analyzed and results presented as flight envelopes which predict occurrences of large values of air speed and acceleration. Comparison is made with SNJ-4 trainer-class airplane data analyzed by the same method. It is concluded that flight envelopes are satisfactory; that the two types show large differences in flight loads and speeds experience; and that SNB-1 will seldom, if ever, exceed design limit load factor and restricted speed, which SNJ-4 can be expected to exceed design-limit load factor and restricted speed in a very small number of flight hours.
    Keywords: Aerodynamics
    Type: NACA-WR-L-759 , NACA-MR-L6F27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-14
    Description: A brief discussion is given of some recent experimental results obtained on a supersonic transport-type airplane for a large range of Mach numbers. The theoretical arguments which led to the configuration of this airplane were brought out at the NACA Conference on Supersonic Aerodynamics at the Langley Laboratory, June 1940, 1947; hence, it will not be necessary to dwell on them herein. Briefly, our calculations showed that a reasonably good lift-drag ratio and, hence, reasonably good fuel economy, could be maintained up to a Mach number of 1.5. The configuration required would incorporate a long slender body and wings having a large angle of sweepback together with the highest practicable aspect ratio.
    Keywords: Aerodynamics
    Type: NACA Conference on Aerodynamic Problems of Transonic Airplane Design; 165-168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: An untwisted wing, which when unswept has an NACA 65-210 section, an aspect ratio of 9.0 and a taper ration of 2.5:1.0, has been tested with no sweep, and 30 deg and 45 deg of sweepback and sweepforward in conjunction with a typical fuselage at Mach numbers from 0.60 to 0.96 at angles of attack generally between -2 deg and 10 deg in the Langley 8-foot high-speed tunnel. Sweep was obtained by rotating the wing semispans about a point in the plane of symmetry. The normal-force, pitching-moment, profile-drag, and loading characteristics for the wings have been obtained from pressure measurements and wake surveys. The results indicate that the wings with +/-30 deg of sweep experienced the severe changes in characteristics associated with the presence of a shock at higher Mach numbers then did the wing without sweep. The differences between the Mach numbers at which the changes occurred for the wings with +/-30 deg sweep and no sweep were generally slightly less than the factor 1/cosDelta(sub r) times the Mach numbers at which the changes occurred for the unswept wing, Delta(sub r) being the sweep angle. The wings with +/-45 deg of sweep did not experience the changes in the characteristics associated with the presence of shock at an angle of attack of 2 deg at Mach numbers up to the highest test value. The magnitudes of changes in the normal-force and pitching-moment coefficients that occurred were less for the wing with 30 deg of sweep than for the unswept wing. The use of sweepforward was superior to sweepback in delaying and reducing the changes in the normal-force coefficients, but was inferior in delaying and reducing the changes in the profile-drag coefficients. Increasing the Mach number to the highest test values had little effect on the positions of the center of loads on the various configurations for the probable design load conditions.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J01a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A Westinghouse 24C-2 combustor was investigated at conditions simulating operation of the 24C Jet engine at zero ram over ranges of altitude and engine speed. The investigation was conducted to determine the altitude operational limits, that is, the maximum altitude for various engine speeds at which an average combustor-outlet gas temperature sufficient for operation of the jet engine could be obtained. Information was also obtained regarding the character of the flames, the combustion efficiency, the combustor-outlet gas temperature and velocity distributions, the extent of afterburning, the flow characteristics of the fuel manifolds, the combustor inlet-to-outlet total-pressure drop, and the durability of the combustor basket. The results of the investigation indicated that the altitude operational limits for zero ram decreased from 12,000 feet at an engine speed of 4000 rpm to a minimum of 9000 feet at 6000 rpm, and thence increased to 49,000 feet at 12,000 rpm.. At altitudes below the operational limits, flames were essentially steady, but, at altitudes above the operational limits, flames were often cycling and either blew out or caused violent explosions and vibrations. At conditions on the altitude operational limits the type of combustion varied from steady to cycling with increasing fuel-air ratio and the reverse occurred with decreasing fuel-air ratio. In the region of operation investigated, the combustion efficiency ranged from 75 to 95 percent at altitudes below the operational limits and dropped to 55 percent or less at some altitudes above the operational limits. The deviations in the local combustor-outlet gas temperatures were within +20 to -30 percent of the mean combustor temperature rise for inlet-air temperatures at the low end of the range investigated, but became more uneven (up to +/-100 percent) with increasing inlet-air temperatures. The distribution of the combustor-outlet gas velocity followed a similar trend. Practically no afterburning downstream of the combustor outlet occurred. At conditions of high inlet-air temperature several factors indicated that fuel vapor or air formed in the fuel manifolds and adversely affected combustion. The combustor inlet-to-outlet total-pressure drop can be correlated as a function of the ratio of the combustion-air inlet density to outlet density and of the inlet dynamic pressure. The walls of the combustor basket were warped and burned during 29 hours of operation.
    Keywords: Aerodynamics
    Type: NACA-RM-E6J09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...