ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (4)
  • Chlorella fusca
  • High pressure liquid chromatography
  • 1950-1954  (4)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 5 (1950), S. 283-300 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 13 (1954), S. 21-42 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The phases which are formed at, e.g., 22°C., when a solution containing, e.g., 1.1% polystyrene and 1.7% ethyl cellulose is made in benzene, are characterized by having a low interfacial tension (⋍10-3 erg/cm.2), which permits droplets of the one phase in the other to be easily deformed and disrupted in a field of flow. The size and shape of the droplets thus formed were determined by an optical method depending upon the statistical addition of the deflections suffered by a beam of light in its passage through the medium. It is found that at intermediate velocity gradients very small and extremely elongated droplets are stable and that, at a given temperature, the phase separation can be reversed by raising the velocity gradient above a definite value. A full discussion of the observations is given and it is shown in particular that the appearance of extremely elongated drops at certain velocity gradients is due to a stationary state equilibrium between processes causing the drops to break up and others causing them to recombine again. The superposition of break-up and recombination is thus responsible for the existence in practice of inherently unstable drop shapes.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 14 (1954), S. 193-208 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: For the description of the practical properties of a large number of linear polymer molecules as well as for the discussion of the various mean parameters of the individual chain molecule, the model usually employed to represent the molecule consists of N m straight line chain elements of length A m statistically joined to each other (straight element model). For the construction of large-scale wire models of polymer molecules to be used in model experiments on the hydrodynamic behavior of chain molecules, a somewhat different model (circular segment model) was employed in previous papers. In these papers the relationships connecting the parameters which characterize these two models respectively have been determined on the basis of certain assumptions. These assumptions, as has recently been shown, were however partly in error and certain corrections have now to be applied to the numerical constants which appear in previously published formulas for the diffusion and sedimentation constants and for the intrinsic viscosity and streaming birefringence. The formulas, resulting after these corrections have been incorporated, are compiled in the present paper and the effect of these corrections on the interpretation of both new and old experimental results is discussed. It is found that agreement between theory and experiment is improved by the use of the corrected expressions and that in particular certain discrepancies which had previously existed between the lengths A m of the statistical chain element as calculated from sedimentation and diffusion experiments, on the one hand, and viscosity determinations on the other, disappear after these corrections are applied (see Table I).
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 6 (1951), S. 224-242 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: If a sample of a highly elastic material is rapidly extended and then held at constant length, a force tending to restore it to its original condition will be observed between its ends. This force is a t its largest immediatly after the sample was extended and then begins to decrease, at first rapidly, but afterwards more slowly, until finally it reaches a practically constant value, or vanishes completely.The decrease of the restoring force in the course of time can be formally represented by assuming the existence in the material of a large number of cohesional mechanisms having different discrete relaxation times or even a continuous relaxation time spectrum. The relaxation time spectrum can be calculated from the observed time rate of decline of the modulus of elasticity, either by using the experimented values directly, or by employing the relevant empirical formula. A practical calculation of this kind has been performed in the case of rubber.The knowledge of the relaxation time spectrum of a material permits the description of its entire viscoelastic behaviour. In the case of rubber, for example, the relaxation time spectrum yields the important fact, that in the case of a periodically varying strain the angle of loss is practically independent of the frequency. From this as further conclusion there emerges the fact, that in the case of periodic deformations, the sample cannot be thought of as having a viscosity in the usual sense, but rather a viscosity, which increases in proportion to the duration of a cycle (a period) of the deformation.In terms of a model the existence of a relaxation time spectrum with relaxation times between 10-2 〈 τ 〈 105 secs. can in the case of a lightly vulcanized rubber be interpreted as being due to the fact, that simultaneously with the affine transformation, which the chemical vulcanization points undergo upon rapid extension, there are also shorter portions of the main, not bounded by chemical cross-linkages, whose ends perform an exactly similar transformation, e. g. an extension. Such chain segments can return from the improbable condition, into which they are moved by the extension, to a more probable configuration, but require time to do so. If the restoring force is therefore measured, before such short segments had time to alter their constellation, a correspondingly larger value of the force is determined. A certain segment length is in other words characteristic for the restoring force at any given instant t and the molecular weight Mf, of the segments, which are on the point of relaxing, is therefore (see equation 10) found to depend on the time.An estimate of the time t required by a network segment, whose ends are not bounded by chemical Vulcanization points, to change its constellation, is given. Applying this result to the available experimental data the conclusion is reached, that the viscosity of the embedding medium (i. e. the rubber) increases rapidly as the molecular weight Mf of the moving chain segment increases. Such a steep rise of the effective η value of rubber with increasing molecular weight of the diffusing substance has actually been demonstrated experimentally (in particular by F. Grün), and the viscosity values calculated for rubber on this basis agree approximately with the values obtained at corresponding molecular weight from the relaxation time spectrum.
    Notes: Wenn ein hochelastischer Stoff rasch gedehnt und dann auf konstanter Länge gehalten wird, so beobachtet man eine Rückstellkraft, welche unmittelbar nach erfolgter Dehnung am größten ist und welche dann anfangs rasch, später langsamer auf einen praktisch konstanten Wert oder auch auf Null absinkt.Der zeitliche Abfall der Rückstellkraft kann formal durch das Vorliegen einer Vielzahl von Zusammenhaltsmechanismen mit verschiedenen Relaxationszeiten bzw. durch das Vorliegen eines kontinuierlichen Relaxationszeitspektrums gedeutet werden. Das Relaxationszeitspektrum kann aus dem beobachteten oder durch eine Formel dargestellten zeitlichen Abfall des Elastizitätsmoduls durch Rechnung gewonnen werden, eine Berechnung, welche für den Fall von Kautschuk praktisch durchgeführt worden ist.Die Kenntnis des Relaxationszeitspektrums gestattet, das gesamte viskos-elastische Verhalten einer Substanz zu beschreiben. Im Falle von Kautschuk ergibt sich z. B. aus dem Relaxationszeitspektrum die wichtige Tatsache, daß bei periodischer Beanspruchung der Verlustwinkel von der Frequenz praktisch nicht abhängt, bzw. die Tatsache, daß der Versuchskörper bei periodischer Verformung nicht eine Viskosität schlechthin, sondern eine Viskosität aufweist, welche proportional der Schwingungsdauer (Periode) der Verformung zunimmt.Modellmäßig läßt sich das Auftreten des Relaxationszeitspektrums dadurch deuten. daß das Relaxationszeitspektrum von schwach vulkanisiertem Kautschuk im Bereich 10-2 〈 τ 〈 105 sec. damit in Zusammenhang gebracht wird, daß bei rascher Dehnung des Versuchskörpers nicht nur die Lage der chemischen Vulkanisierungspunkte eine affine Transformation erfährt, sondern daß auch kürzere, nicht durch chemische Vulkanisierungspunkte begrenzte Fadenstücke eine ähnliche Transformation, z. B. Streckung. erfahren. Solche Fadenstücke können aus dem durch die rasche Dehnung erzeugten unwahrscheinlichen Zustande in einen wahrscheinlicheren Zustand zurückkehren, benötigen aber hierfür Zeit. Wird die Rückstellkraft festgestellt, bevor solche kurzen Stücke ihre Konstellation geändert haben, so wird eine entsprechend größere Rückstellkraft festgestellt. Daher wird das für die Größe der Rückstellkraft maßgebende Netzbogengewicht Mf in Gleichung (10) von der Zeit abhängig.Die Zeit t, welche ein Netzbogen, dessen Enden nicht durch Vulkanisationspunkte begrenzt sind, benötigt, um seine Konstellation zu ändern, wird abgeschätzt. Dabei zeigt sich, daß die experimentellen Befunde in der Weise gedeutet werden müssen, daß die Viskosität, welche das Einbettungsmedium Kautschuk der Bewegung von Fadenteilen vom Molgewicht Mf, entgegensetzt, mit steigendem Molgewicht rasch zunimmt. Eine solche Zunahme von η mit dem Molgewicht von im Kautschuk diffundierenden Substanzen ist experimentell tatsächlich beobachtet worden (insbesondere von F. Grün), wobei die Zahlenwerte der zu fordernden η-Werte mit dem auf Grund des Relaxationszeitspektrums geforderten Werten ungefähr übereinstimmen.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...