ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Linum usitatissimum  (1)
  • Medicago sativa  (1)
  • Springer  (2)
  • Cambridge University Press (CUP)
  • PANGAEA
  • 1955-1959  (2)
Collection
Keywords
Publisher
  • Springer  (2)
  • Cambridge University Press (CUP)
  • PANGAEA
Years
Year
  • 1
    ISSN: 1573-5060
    Keywords: alfalfa ; alpha-amylase ; field performance ; manganese-dependent lignin peroxidase ; Medicago sativa ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Transgenic alfalfa plants expressinBacillus licheniformis alpha-amylase and mangaese-dependent lignin peroxidase (Mn-P) from Phanerochaete chrysosporium were produced using the Agrobacterium tumefaciens transformation system. In each case, there was a range of expression of the introduced gene among independent transgenic plants. Plants producing alpha-amylase showed no alteration of phenotype. Production of Mn-P in alfalfa, howeven, in most cases adversely affected plant growth and development. Affected plants were stunted with yellowing foliage, but survived and produced seed. Results from field trials showed that Mn-P production in transgenic alfalfa reduced dry matter yield and plant height. The extent of these symptoms and yield reduction was, for the most part, related to the level of foreign protein production as estimated by Western analysis. Field data from transgenic plants expressing alpha-amylase showed that there was no effect of foreign protein production on plant performance. Expression of Mn-P was shown to segregate in sexual progeny derived from transgenic plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: Linum usitatissimum ; linseed ; mutation breeding ; somaclonal variation ; fatty acids ; genetic engineering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In the early 1980s the phenomenon of somaclonal variation induced by cell culture was exploited to produce genetic variation in linseed. The linseed variety Andro, derived from the widely grown Canadian variety McGregor, was selected in saline culture and was released for production in Canada. ‘Andro’ possesses traits very different from its parent, such as increased seedling vigour and tolerance to heat stress. Additional stable somaclonal variation in characters such as yield, days to maturity, seed weight and oil content were subsequently induced in ‘McGregor’. However, despite extensive screening of the somaclonal variants, no significant variation in the fatty acid profile was found. Chemical mutagenesis using ethyl methanesulphonate was, however, succesful in modifying the fatty acid profile of McGregor. Initial screening of M2 seed by the thiobarbituric acid colourimetric procedure was followed by gas chromatography to select half-seeds with atypical fatty acid profiles. Two independent, partially dominant genes were identified that were responsible for reducing the linolenic acid (18 : 3) from 50% to 2% while increasing linoleic acid (18 : 2) to 70%. A single, partially dominant gene, inherited independently of the linolenic acid genes, increased palmitic acid (16 : 0) from 7% to 30% and palmitoleic acid (16 : 1) from trace amounts to 4%. Agrobacterium-mediated transformation of linseed has also been successful. Herbicide tolerance genes for glyphosate, sulfonylurea and phosphinothricin have been incorporated into Canadian varieties. Commercially useful levels of tolerance to sulfonylurea herbicides have been achieved with no adverse agronomic affect. It is expected that a transgenic variety containing this resistance will be registered for commercial production in Canada in 1994. Standard breeding techniques, the application of antisense technology and the overexpression of fatty acid synthesis genes are being used to further modify the fatty acid profile of linseed, as well as for the transfer of abiotic stress-related genes identified in bromegrass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...