ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1965-1969  (2)
Collection
Publisher
Years
Year
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Filtration rates and the extent of phagocytosed food particles were determined in the offshore lamellibranchs Artica islandica and Modiolus modiolus in relation to particle concentration, body size and temperature. Pure cultures of the algae Chlamydomonas sp. and Dunaliella sp. were used as food. A new method for determining filtration rates was developed by modifying the classical indirect method. The concentration of the experimental medium (100%) was kept constant to ±1%. Whenever the bivalves removed algae from the medium, additional algae were added and the filtration rate of the bivalves expressed in terms of percentage amount of algae added per unit time. The concentration of the experimental medium was measured continuously by a flow colorimeter. By keeping the concentration constant, filtration rates could be determined even in relation to different definite concentrations and over long periods of time. The amount of phagocytosed food was measured by employing the biuret-method (algae cells ingested minus algae cells in faeces). Filtration rates vary continuously. As a rule, however, during a period of 24 h, two phases of high food consumption alternate with two phases of low food consumption during which the mussels' activities are almost exclusively occupied by food digestion. Filtration rate and amount of phagocytosed algae increase with increasing body size. Specimens of A. islandica with a body length of 33 to 83 mm filter between 0.7 to 71/h (30–280 mg dry weight of algae/24 h) and phagocytose 21 to 122 mg dry weight of algae during a period of 24 h. The extent of food utilization declines from 75 to 43% with increasing body size. In M. modiolus of 40 to 88 mm body length, the corresponding values of filtration rate and amount of phagocytosed algae range between 0.5 and 2.5 l/h (20–100 mg dry weight of algae) and 17 to 90 mg dry weight of algae, respectively; the percentage of food utilization does not vary much and lies near 87%. Filtration rate and amount of phagocytosed algae follow the allometric equation y=a·x b. In this equation, y represents the filtration rate (or the amount of phagocytosed algae), a the specific capacity of a mussel of 1 g soft parts (wet weight), x the wet weight of the bivalves' soft parts, and b the specific form of relationship between body size and filtration rate (or the amount of phagocytosed algae). The values obtained for b lie within a range which indicates that the filtration rate (or the amount of phagocytosed algae) is sometimes more or less proportional to body surface area, sometimes to body weight. Temperature coefficients for the filtration rate are in Arctica islandica Q10 (4°–14°C)=2.05 and Q10 (10°–20°C)=1.23, in Modiolus modiolus Q10 (4°–14°C)=2.33 and Q10 (10°–20°C)=1.63. In A. islandica, temperature coefficients for the amount of phagocytosed algae amount to Q10 (4°–14°C)=2.15 and Q10 (10°–20°C)=1.55, in M. modiolus to Q10 (4°–14°C)=2.54 and Q10 (10°–20°C)=1.92. Upon a temperature decrease from 12° to 4°C, filtration rate and amount of phagocytosed algae are reduced to 50%. At the increasing concentrations of 10×106, 20×106 and 40×106 cells of Chlamydomonas/l offered, filtration rates of both mollusc species decrease at the ratios 3:2:1. At 12°C, pseudofaeces production occurs in both species in a suspension of 40×106, at 20°C in 60×106 cells of Chlamydomonas/l. At 12°C and 10–20×106 cells of Chlamydomonas/l, the maximum amount of algae is phagocytosed. At 40×106 cells/l, the amount of phagocytosed cells is reduced by 26% as a consequence of low filtration rates and intensive production of pseudofaeces. At 20°C and 20–50×106 cells of Chlamydomonas/l, the maximum amount of algae is sieved out and phagocytosed; the concentration of 10×106 cells/l is too low and cannot be compensated for by increased activity of the molluscs. With increasing temperatures, the amount of suspended matter, allowing higher rates of filtration and food utilization, shifts toward higher particle concentrations; but at each temperature a threshold exists, above which increase in particle density is not followed by increase in the amount of particles ingested. Based on theoretical considerations and facts known from literature, 7 different levels of food concentration are distinguishable. Experiments with Chlamydomonas sp. and Dunaliella sp. used as food, reveal the combined influence of particle concentration and particle size on filtration rate. Supplementary experiments with Mytilus edulis resulted in filtration rates similar to those obtained for M. modiolus, whereas, experiments with Cardium edule, Mya arenaria, Mya truncata and Venerupis pullastra revealed low filtration rates. These species, inhabiting waters with high seston contents, seem to be adapted to higher food concentrations, and unable to compensate for low concentrations by higher filtration activities. Adaptation to higher food concentrations makes it possible to ingest large amounts of particles even at low filtration rates. Suspension feeding bivalves are subdivided into four groups on the basis of their different food filtration behaviour.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1969-10-01
    Print ISSN: 0025-3162
    Electronic ISSN: 1432-1793
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...