ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1965-1969  (4)
Collection
Years
Year
  • 1
    Publication Date: 1966-06-01
    Description: A correlation scheme for velocity and temperature profiles is derived for turbulent boundary layers in adverse pressure gradients. The resulting analytical expressions are obtained by what could be referred to as ‘regional similarity’ arguments. This avoids the need to make use of the Reynolds analogy (explicitly, at least) or the usual local gradient-type diffusion expressions for momentum and thermal transport (‘the local similarity’ and Boussinesq concept). The expressions agree well with experimental data for the velocity profiles and encouraging correlation is shown for the temperature profiles. The expressions cover a wider part of the profile than given by the logarithmic law of the wall. Surface roughness and Prandtl-number effects are included in the analysis. © 1966, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1966-11-01
    Description: The results of a detailed mean velocity survey of a smooth-wall turbulent boundary layer in an adverse pressure gradient are described. Close to the wall, a variety of profiles shapes were observed. Progressing in the streamwise direction, logarithmic, ½-power, linear and [Formula omitted]-power distributions seemed to form, and generally each predominated at a different stage of the boundary-layer development. It is believed that the phenomenon occurred because of the nature of the pressure gradient imposed (an initially high gradient which fell to low values as the boundary layer developed) and attempts are made to describe the flow by an extension of the regional similarity hypothesis proposed by Perry, Bell & Joubert (1966). Data from other sources is limited but comparisons with the author's results are encouraging. © 1966, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1969-06-23
    Description: This paper describes a detailed experimental study of turbulent boundary-layer development over rough walls in both zero and adverse pressure gradients. In contrast to previous work on this problem the skin friction was determined by pressure tapping the roughness elements and measuring their form drag.Two wall roughness geometries were chosen each giving a different law of behaviour; they were selected on the basis of their reported behaviour in pipe flow experiments. One type gives a Clauser type roughness function which depends on a Reynolds number based on the shear velocity and on a length associated with the size of the roughness. The other type of roughness (typified by a smooth wall containing a pattern of narrow cavities) has been tested in pipes and it is shown here that these pipe results indicate that the corresponding roughness function does not depend on roughness scale but depends instead on the pipe diameter. In boundary-layer flow the first type of roughness gives a roughness function identical to pipe flow as given by Clauser and verified by Hama and Perry & Joubert. The emphasis of this work is on the second type of roughness in boundary-layer flow. No external length scale associated with the boundary layer that is analogous to pipe diameter has been found, except perhaps for the zero pressure gradient case. However, it has been found that results for both types of roughness correlate with a Reynolds number based on the wall shear velocity and on the distance below the crests of the elements from where the logarithmic distribution of velocity is measured. One important implication of this is that a zero pressure gradient boundary layer with a cavity type rough wall conforms to Rotta's condition of precise self preserving flow. Some other implications of this are also discussed.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1965-06-01
    Description: The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered. §1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert. In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities. © 1965, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...