ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (2)
  • 1975-1979  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Normal gill structure and thyroxine induced resorptive changes were studied in Ambystoma mexicanum. The gill is normally composed of a mesenchymal core covered with a multilayered epithelium. The general architecture is simpler than that of the teleost and elasmobranch, but the vascular arrangement is analogous. There are three basic cell types in the epithelium: a characteristic epithelial cell containing tonofibrils and mucus, a ciliated cell with an ultrastructure similar to that of the chloride cell, and the mucin-filled Leydig cell. The basal lamella and mesenchymal tissue appear typical of amphibians.Cytologic changes during thyroxine induced gill resorption varied with cell type. Some epithelial cells demonstrated a cytoplasmic response with swelling of mitochondria and rough endoplasmic reticulum and late, lytic nuclear changes, while others remained viable and went on to cornify. Ciliated cells showed early changes in nuclear chromatin pattern followed by rapid, progressive dilatation of endoplasmic reticulum. Leydig cells sustained variable changes leading to collapse of the perinuclear mucus, and cells of this type were absent in mature epidermis. Early basement membrane changes included widening and reduplication of the adepidermal membrane followed by morphologic fraying of collagen plies. There is no cytologic evidence to suggest that autolysis plays a major role in gill tissue dissolution.Resorption involved the maintenance of structural integrity in the face of diminishing physical dimensions. The epithelium became cornified, the basement lamellae dissolved, and the mesenchymal tissue was resorbed through action of macrophages in an orderly distal to proximal direction.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 85 (1975), S. 283-291 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The cell membrane potential of cultured Chinese hamster cells is known to increase at the start of the S phase. The putative role of the cell membrane potential as a regulator of cell proliferation was examined by following the cell cycle traverse of synchronized Chinese hamster cells in the presence or absense of high exogenous levels of potassium. An increase in external potassium levels results in a depressed membrane potential and a reduced rate of cell proliferation. A potassium concentration of 115 mM was used in experiments with synchronized cells since at that level cell proliferation is almost completely halted, recovery of growth is rapid and complete, and the membrane potential is reduced to a level well below that normally found in cells in the G1 phase.A mitotic population was divided into four aliquots and plated in either control medium or medium containing 115 mM K+. Cells placed directly into high K+ medium were retarded in their exit from mitosis and displayed a delayed and abnormal entry into the S phase. If control medium was added after two hours, cell cycle traverse was normal, but delayed by two hours compared to control cells. If the mitotic cells were plated directly into control medium and two hours later were shifted to high K+ medium, the cells entered the S phase in the absence of the normally observed increase in membrane potential and proceeded to the next mitosis normally. It was concluded that the increase in membrane potential observed at the start of the S phase in isolated synchronized cells is not a requirement for the initiation of DNA synthesis. In addition, sensitivity to the high potassium regimen was found at two different times during the cell cycle. In one case, cells were impeded in their transit through mitosis. Such cells displayed an altered chromosome structure which may account for the partial mitotic block. In the second case, synchronized cells displayed a sensitivity to the high potassium regimen in early G1 which appeared to be separate from the block in mitosis and independent of a change in the membrane potential.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...