ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1978-01-27
    Description: The frog sympathetic ganglion has been used as a model to elucidate the cellular mechanism of barbiturate anesthesia. Anesthetic concentrations of pentobarbital markedly reduced the fast nicotinic excitatory postsynaptic potential while having no effect on the slow excitatory postsynaptic potential or slow inhibitory postsynaptic potential, even though all three synaptic potentials depend on the presynaptic release of acetylcholine. A similar differential effect was seen for nicotinic and muscarinic responses to exogenously applied agonists, while the depolarizing action of gamma-aminobutyric acid (GABA) was enhanced. These results indicate that pentobarbital has remarkably selective actions on the sympathetic ganglion and further indicate that blockade of ganglionic transmission by anesthetic concentrations of pentobarbital can be entirely explained by a postsynaptic action. The present results strengthen the concept that pentobarbital anesthesia results from a postsynaptic blockade of central excitatory synapses which increase sodium conductance coupled with a postsynaptic enhancement of GABA-mediated synaptic inhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicoll, R A -- New York, N.Y. -- Science. 1978 Jan 27;199(4327):451-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/202032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura ; Carbachol/pharmacology ; Ganglia, Autonomic/*drug effects ; In Vitro Techniques ; Membrane Potentials/drug effects ; Neural Inhibition/drug effects ; Pentobarbital/*pharmacology ; Rana catesbeiana ; Receptors, Nicotinic/drug effects ; Synaptic Membranes/*drug effects ; Synaptic Transmission/drug effects ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...