ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SOLID-STATE PHYSICS  (3)
  • ASTROPHYSICS
  • Physical properties of rocks
  • 1975-1979  (3)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: Post-shock temperatures were measured in a wide variety of materials, including those of geophysical interest such as silicates by using an infrared detector to determine the brightness temperature of samples shocked to pressures in the range 5 to approximately 30 GPa. Measurements were made in the 4.5 to 5.75 micron and in the 7 to 14 micron wavelength ranges. Reproducible results, withe the temperatures in the two wavelength bands generally in excellent agreement, were obtained for aluminum-2024 (10.5 to 33 GPa; 125 to 260 C), stainless steel-304 (11.5 to 50 GPa; 80 to 350 C), crystalline quartz (5.0 to 21.5 GPa; 80 to 250 C) forsterite (7.5 to 28.0 GPa; approximately 30 to 160 C) and Bamble bronzite (6.0 to 26.0 GPa; approximately 30 to 225 C). Results are generally much higher at low pressures than the values calculated assuming a hydrodynamic rheology and isentropic release parallel to the Hugoniot but tend towards them at higher pressures.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-157738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: The shock wave (Hugoniot) data on single crystal and porous anorthite (CaAl2Si208) to pressures of 120 GPa are presented. These data are inverted to yield high pressure values of the Grueneisen parameter, adiabatic bulk modulus, and coefficient of thermal expansion over a broad range of pressures and temperatures which in turn are used to reduce the raw Hugoniot data and construct an experimentally based, high pressure thermal equation of state for anorthite. The hypothesis that higher order anharmonic contributions to the thermal properties decrease more rapidly upon compression than the lowest order anharmonicities is supported. The properties of anorthite corrected to lower mantle conditions show that although the density of anorthite is comparable to that of the lower most mantle, its bulk modulus is considerably less, hence making enrichment in the mantle implausible except perhaps near its base.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-162180 , CONTRIB-3275
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The current inversion of pressure-particle velocity data for release from a high pressure shock state to a pressure-density path is analyzed. It is assumed that the release process is isentropic. It was shown that for geological materials below stresses of 150 GPa, the effective viscosity must be 1000 kg/m/s in order that the viscous (irreversible) work carried out on the material in the shock state remains small compared to the mechanical work recovered upon adiabatic rarefaction. The available data pertaining to the offset of the Rayleigh line from the Hugoniot for minerals, the magnitude of the shear stress in the high pressure shock state for minerals, and the direct measurements of the viscosities of several engineering materials shocked to pressures below 150 GPa yield effective viscosities of 1000 kg/m/s or less. An inferance that this indicates that the conditions for isentropic release of minerals from shock states are achieved, and a conclusion that the application of the Riemann integral to obtain pressure-density states along the release adiabats of minerals in shock experiments is valid are made.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-162143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...