ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (5)
  • American Association for the Advancement of Science  (1)
  • 1975-1979  (6)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 95 (1978), S. 239-257 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Experiments have been carried out on the capping by lectins and antibodies of surface receptors of mouse splenic T and B lymphocytes and other cells, in which the surface distribution of the lectin or antibody, and the intracellular distribution of myosin or actin, were determined on the same cells by a double fluorescence technique. For this purpose, a general method for intracellular staining was developed which is intended to preserve sensitive antigens and fragile ultrastructural elements. The method involves mild formaldehyde fixation of the cells or tissues, infusion with concentrated sucrose, rapid freezing, and the preparation of frozen sections thinner than 2 μm thickness. The immunofluorescent or other appropriate fluorescent reagents are then applied to the thawed section. In the present experiments, intracellular actin was detected using a fluorescent staining method based on the interaction of F-actin with heavy meromyosin, while intracellular myosin was detected by an indirect immunofluorescence procedure. Our findings were that the formation of a cap by each of the lectins or antibody reagents was always accompanied by a concentration of myosin and actin directly under the cap. These and other results suggest that capping is an active process in which actin and myosin participate directly in the formation of all caps. This proposal carries important new implications for the molecular mechanism of capping.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have examined the distribution of several mechanochemical proteins inside rat A10 cells in monolayer culture, both in sparse cultures and at the edges of in vitro “wounds” in confluent cultures. The proteins examined were actin, myosin, tropomyosin, α-actinin, filamin, and tubulin. In each experiment, a pair of these proteins (one of which was usually actin) were examined simultaneously by double fluorescence staining methods. Actin was specifically stained by a method based on heavy meromyosin binding, whille the other proteins were specifically stained by indirect immunofluorescence procedures. The most important of the various results described was obtained with cells moving out from the edge of an in vitro wound. Within the flat leading lamella of such a cell, there was an extended region in which myosin was severely depleted or absent compared to the proximal regions of the same cells. By contrast, the other proteins were abundantly present throughout the leading lamella, except for tropomyosin, which was somewhat depleted but not as extensively as myosin. In Nomarski optics, there was no detectable morphological differentiation between the region depleted of myosin and the more proximal portion of the same lamella. While the depletion of myosin from the motile regions of cells does not rule out the involvement of some form of an actomyosin sliding filament mechanism, it suggests that other molecular mechanisms for generating motility be seriously considered.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 6 (1977), S. 313-323 
    ISSN: 0091-7419
    Keywords: peripheral and integral proteins ; membrane biosynthesis ; hydrophobic and hydrophilic interactions ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Membranes are structures whose lipid and protein components are at, or close to, equilibrium in the plane of the membrane, but are not at equilibrium across the membrane. The thermodynamic tendency of ionic and highly polar molecules to be in contact with water rather than with nonpolar media (hydrophilic interactions) is important in determining these equilibrium and nonequilibrium states. In this paper, we speculate about the structures and orientations of integral proteins in a membrane, and about how the equilibrium and nonequilibrium features of such structures and orientations might be influenced by the special mechanisms of biosynthesis, processing, and membrane insertion of these proteins. The relevance of these speculations to the mechanisms of the translocation event in membrane transport is discussed, and specific protein models of transport that have been proposed are analyzed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 9 (1978), S. 373-389 
    ISSN: 0091-7419
    Keywords: surface receptors ; capping ; endocytosis ; actin ; myosin ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have made observations, by double fluorescence staining of the same cell, of the distributions of surface receptors, and of intracellular actin and myosin, on cultured normal fibroblasts and other flat cells, and on lymphocytes and other rounded cells. The binding of multivalent ligands (a lectin or specific antibodies) to a cell surface receptor on flat cells clusters the cell receptors into small patches, which line up directly over the actin- and myosin-containing stress fibers inside the cell. Similar ligands binding to rounded cells can cause their surface receptors to be collected into caps on the surface, and these caps are invariably found to be associated with concentrations of actin and myosin under the capped membrane. Although these ligand-induced surface phenomena appear to be different on flat and rounded cells, we propose that in both cases clusters of receptors become linked across the membrane to actin- and myosin-containing structures. In flat cells these structures are very long stress fibers; therefore, when clusters of receptors become linked to these fibers, the clusters are immobilized. In round cells, membrane-associated actin- and myosin-containing structures are apparently much less extensive than in flat cells; therefore, clusters of receptors linked to these structures are still mobile in the plane of the membrane. We suggest that in this case the clusters are then actively collected into a cap by an analogue of the muscle sliding filament mechanism.To explain the transmembrane linkage, we propose that actin is associated with the plasma membrane as a peripheral protein which is directly or indirectly bound to an integral protein (or proteins) X of the membrane. Individual molecules of any receptor are not bound to X, but after they are specifically clustered into patches, a patch of receptors then becomes bound to S and hence to actin/myosin.Patching and capping of specific receptors on rounded cells is often accompanied by a specific endocytosis of the ligand-receptor complexes. This represents one common transport mechanism of a protein (the ligand) across the plasma membrane. The possibility is discussed that this type of endocytosis is mediated by a transmembrane linkage of the clustered receptor to actin/myosin. Another mechanism of endocytosis involves the “coated pit” structures that are observed by electron microscopy of plasma membranes. The possible relationships between an actin/myosin and a coated pit mechanism of endocytosis are explored.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 15 (1977), S. 115-116 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1977-02-04
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...