ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Continuous culture  (10)
  • Springer  (10)
  • Oxford University Press
  • PANGAEA
  • 1975-1979  (10)
  • 1935-1939
Collection
Publisher
  • Springer  (10)
  • Oxford University Press
  • PANGAEA
Years
Year
  • 1
    ISSN: 1432-072X
    Keywords: Klebsiella aerogenes ; Ammonia-limitation ; Continuous culture ; Potassium-limitation ; Product formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract With chemostat cultures of Klebsiella aerogenes growing at a fixed dilution rate, initially under conditions of glucose-limitation, transition to either potassium-limitation or ammonia-limitation was found not to be a steep step function. A wide range of intermediate steady states could be established in which neither substrate was present in excess of the growth requirement. As the molar ratio of glucose: K+ in the feed medium was progressively increased, the additional glucose carbon was first converted solely to CO2. Thereafter, when the molar ratio exceeded 45, acetate, and then pyruvate and 2-ketogluconate were excreted at increasing rates. In contrast, transition to ammonia-limitation provoked an early excretion of 2-oxoglutarate and 2-ketogluconate, followed (at higher glucose input concentrations) by acetate and pyruvate. These patterns of product excretion are considered in relation to the specific nature of the growth-limitation, to probable changes in the energy charge and redox balance within the growing cells, and to the accompanying modulation of tricarboxylic acid-cycle activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 108 (1976), S. 117-124 
    ISSN: 1432-072X
    Keywords: Candida utilis ; Potassium-limitation ; Continuous culture ; Oxidative phosphorylation ; Yield values
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When grown in a defined simple salts medium, plus vitamins, Candida utilis displayed an absolute requirement for potassium. But the potassium content of this yeast was exceedingly variable and, with aerobic chemostat cultures (grown at a dilution rate of 0.1 h-1; 30° C; pH 5.5), was low (〈 0.2%, w/w) when they were potassium-limited and high (〉 2%, w/2) when glucose-limited. With potassium-limited cultures, the cell-bound potassium content also varied markedly with growth rate, though hardly at all with glucose-limited cultures; magnesium- and phosphate-limited cultures gave intermediate responses. Changes in cell-bound potassium content correlated only weakly with changes in the cellular contents of magnesium, phosphate and RNA, but strongly with changes in both the Y glucose and Y O values, indicating an involvement of potassium in the generation of energy by oxidative phosphorylation reactions and/or the utilization of this energy for growth processes. Studies with isolated mitochondria revealed that potassium-limited organisms had a changed content of cytochrome b relative to cytochrome a, and lacked coupling at either site 2 or site 3 of the respiratory chain. These results are discussed in relation to the reported functions of potassium in the growth of micro-organisms, and the organizational differences between prokaryotic and eukaryotic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Klebsiella aerogenes ; Continuous culture ; Growth yield ; Maintenance energy ; Bioenergetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Carbon-limited chemostat cultures of Klebsiella aerogenes NCTC 418 consumed more oxygen per unit of cell synthesis when growing on mannitol or glycerol than when growing on glucose; and since the “maintenance” requirements were similar, this suggested that the extra reducing equivalents present in these compounds were oxidized wastefully. By comparison with carbon-limited cultures, carbon-sufficient cultures that were ammonia-, sulphate- or phosphate-limited generally consumed considerably more oxygen per unit of cell synthesis, particularly at low growth rates. Thus, according to the theory of Pirt, these carbon-sufficient cultures had a greatly increased “maintenance energy” requirement but nevertheless used the remaining energy with a much increased efficiency compared with carbon-limited cultures. This, we suggest, is a false conclusion which stems from the basic assumption that the maintenance requirement does not change with growth rate. Thus we propose an alternative theory which allows for this possibility, and present evidence to show that it may be applicable to both carbon-limited and carbon-sufficient chemostat cultures. Finally we offer an explanation of the high “maintenance” rate of oxygen consumption found with carbon-sufficient cultures, and consider this phenomenon in relation to the loose coupling between respiration and growth extant in most microbial cultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 110 (1976), S. 305-311 
    ISSN: 1432-072X
    Keywords: Klebstella aerogenes ; Continuous culture ; Growth yields ; Maintenance energy ; Bioenergetics ; Energy-spilling reactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When cell-saturating amounts of glucose and phosphate were added to steady state cultures ofKlebsiella aerogenes that were, respectively, glucose-and phosphate-limited, the organisms responded immediately with an increased oxygen consumption rate. This suggested that in neither case was glucose transport the rate-limiting process, and also that organisms must posses effective mechanisms for spilling the excess energy initially generated when a growth-limitation is temporarily relieved. Steady state cultures of mannitol- or glucose-limited organisms also seemingly generated energy at a greater rate than was required for cell synthesis since gluconate-limited cultures consumed oxygen at a lower rate, at each corresponding growth rate, than did mannitol- or glucose-limited cultures, and there-fore expressed a higherY o value. Thus, mannitol- and glucose-limitations must be essentially carbon (and not energy) limitations. The excess energy generated by glucose metabolism is one component of “maintenance” and could be used at lower growth rates to maintain an increased solute gradient across the cell membrane, imposed by the addition of 2%, w/v, NaCl to the growth environment. The maintenance rates of oxygen consumption ofK. aerogenes also could be caused to increase by adding glucose discontinuously (drop-wise) to a glucose-limited chemostat culture, or by exchanging nitrate for ammonia as the sole utilizable nitrogen source. The significance of these findings to an assessment of the physiological factors circumscribing energy-spilling reactions in aerobic cultures ofK. aerogenes is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Candida utilis ; Continuous culture ; Mitochondria ; Oxidative phosphorylation ; Cytochromes ; Respiratory chain ; Potassium-limitation ; Sulphate-limitation ; Phosphate-limitation ; Magnesium-limitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract With Candida utilis cells that had been removed directly from a 61 chemostat culture, in steady state, well-coupled mitochondria generally could be isolated. This required a modified snail-gut enzyme procedure that allowed the total processing time to be decreased to 3 h, or less. Examination of these mitochondria in an oxygraph showed the presence of 3 sites of energy conservation when the cells were grown at various dilution rates between 0.1 and 0.45 h-1 in environments that were, successively, glucose-, ammonia-, magnesium-, phosphate- and sulphate-limited. Potassium-limited cells also apparently possessed 3 sites of oxidative phosphorylation when growing at dilution rates greater than 0.2 h-1, but only 2 sites when growing at lower dilution rates. Analysis of cytochrome spectra obtained with these intact mitochondria revealed large quantitative (but not qualitative) differences, depending on the environmental conditions under which the yeast had been cultured. In particular, comparison of the ratio of cytochrome b to cytochrome a showed a pattern of change with dilution rate in mitochondria from potassium-limited cells that was distinctly different from those evident in mitochondria from cells that had been limited in their growth by the availability of other nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 115 (1977), S. 73-78 
    ISSN: 1432-072X
    Keywords: Candida utilis ; Continuous culture ; Acetate ; Culture pH value ; Respiratory efficiency ; Growth inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Candida utilis was grown on acetate in chemostat cultures that were, successively, carbon and ammonia-limited (30° C; pH 5.5). With carbon(acetate)-limited cultures, the specific rate of oxygen consumption (q O 2) was not a linear function of the growth rate but was markedly stimulated at the higher dilution rates, thus effecting a marked decrease in the Y O value. This increased respiration rate, and decreased yield value, correlated closely with a marked increase in the extracellular acetate concentration. Under ammonia-limiting conditions, very low Y O values were found, generally comparable with those found with carbon-limited cultures growing at the higher dilution rates, but these varied markedly with the extracellular acetate concentration. Thus, when the unused acetate concentration was raised progressively from about 5 g/l to about 21 g/l, the Y O value decreased non-linearly from 11.4 to 5.8. When the extracellular acetate concentration was further increased to 25 g/l, growth was inhibited and the culture washed out. This relationship between respiration rate and the extracellular concentration of unused acetate was also markedly influenced by the culture pH value. Thus, with a fixed extracellular acetate concentration (16±2g/l) and dilution rate (0.14 h−1), lowering the culture pH value progressively from 6.9 to 5.1 effected a marked and progressive increase in the respiration rate. Further lowering of the culture pH to 4.8, however, caused a complete collapse of respiration. In contrast to this situation, progressively lowering the pH value of an acetatelimited culture from 6.9 to 4.5 affected only slightly the culture respiration rate, and growth was possible even at a pH value of 2.5. These results are discussed in the context of the possible mechanisms whereby acetate exerts its toxic effect on the growth of C. utilis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 115 (1977), S. 215-221 
    ISSN: 1432-072X
    Keywords: Candida utilis ; Continuous culture ; Potassium transport ; Potassium-limitation ; Rubidium-limitation ; Glucose-limitation ; Yield values
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Attempts to grow the yeast Candida utilis in continuous culture, using media in which all the potassium had been replaced by other monovalent cations, revealed that neither lithium, sodium, caesium nor ammonium ions could functionally substitute for potassium. However, potassium could be effectively replaced by rubidium which gave (on a molar basis, and under conditions where cation availability limited growth) the same yield of cells as did potassium. Comparison of potassium- and rubidium-limited cultures showed them to be virtually identical in all the measured parameters, with the single exception of the maximum growth rate value which was considerably decreased in the rubidium-containing culture (0.35 h-1 as compared with 0.55 h-1). When, with variously-limited chemostat cultures, both potassium and rubidium were supplied in equimolar amounts, these ions were taken up by the cells in a ratio that varied with both the growth rate and the nature of the growth limitation. With glucose-, phosphate- or magnesium-limited cultures, the molar ratio K+:Rb+ was 1:0.6 (at D=0.1 h-1) and 1:0.17 (at D=0.5 h-1). In contrast, ammonia-limited cultures took up increased amounts of rubidium when growing at a low rate such that the ratio was 1:1.2, at D=0.1 h-1, though still 1:0.17 at the higher growth rate value (D=0.5 h-1). From a comparison of glucose- and ammonialimited cultures growing first with an equimolar mixture of potassium and rubidium, and then with rubidium alone, it was noted that the yield on oxygen was significantly decreased when potassium was absent. These results are discussed in relation to the transport and possible functions of monovalent cations in micro-organisms. It was concluded that, on the basis of these experiments, some objections could be raised against estimation of potassium transport rates by means of the tracer 86Rb.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Potassium-limitation ; Potassium gradient ; Klebsiella aerogenes ; Continuous culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract With a glucose-limited culture of Klebsiella aerogenes, growing at a fixed dilution rate (0.4 h-1), the specific respiration rate varied progressively as a function of the transmembrane K+ gradient. The latter was varied by changing the input K+ concentration and, under these conditions, the specific respiration rate was linearly related to the electrochemical potential of the K+ gradient. Increasing or decreasing the transmembrane K+ gradient in putatively potassium-limited cultures elicited marked changes in respiration rate consistent with the conclusion that the exceptionally high respiration rates expressed by fully glucose-sufficient potassium-limited cultures (i.e., values in excess of 25 mmol O2/g dry weight organisms · h, at D=0.4 h-1) are necessary to scavenge traces of K+ from the environment and hence maintain an exceptionally high transmembrane K+ gradient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 106 (1975), S. 251-258 
    ISSN: 1432-072X
    Keywords: Klebsiella aerogenes ; Continuous culture ; Carbohydrate metabolism ; Overflow metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Klebsiella aerogenes NCTC 418 was grown in chemostat cultures (D=0.17 hr-1; pH 6.8; 35° C) that were, successively, carbon-, sulphate-, ammonia-, and phosphate-limited, and which contained as the sole carbon-substrate first glucose, then glycerol, mannitol and lactate. Quantitative analyses of carbon-substrate used and products formed allowed carbon balances to be constructed and direct comparisons to be made of the effciency of substrate utilization. With all sixteen cultures, carbon recoveries of better than 90% were obtained. Optimum utilization of the carbon substrate was invariably found with the carbon-limited cultures, the sole products being organisms and carbon dioxide. But the extent to which excess substrate was over-utilized varied markedly with both the nature of the growth-limitation and the identity of the carbon-substrate. In general, sulphate-, ammonia-, and phosphate-limited cultures utilized glycerol more efficiently than mannitol, mannitol better than lactate, and glucose least efficiently. Glucose-containing cultures also synthesized some extracellular polysaccharide. When the carbon source was in excess, a range of acidic compounds generally were excreted. Sulphate-limited cultures, growing on glucose, excreted much pyruvate and acetate, whereas similarly-limited cultures growing on glycerol, mannitol or lactate produced only acetate. Ammonialimited cultures invariably excreted 2-oxoglutarate and acetate, whereas phosphate-limited cultures produced gluconic acid, 2-ketogluconic acid and acetate, when growing on glucose, but only acetate when growing on mannitol or lactate. From the rates of substrate and oxygen consumption, and the rates of cell synthesis, yield values for both substrate and oxygen were calculated. These showed different trends, but were similar in being highest under carbon-limitation and substantially lower under all other limitations. The physiological significance of these findings, and the probable nature of the regulatory mechanisms underlying “overflow metabolism” are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: Candida utilis ; Potassium-limitation ; Continuous culture ; Oxidative phosphorylation ; Yield values ; Sodium chloride
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to study the influence of different carbon sources on the K+-requirements of Candida utilis NCYC 321, this yeast was grown at several different dilution rates in potassium-limited continuous cultures with either glucose, glycerol, ethanol, citrate or lactate serving as the carbon and energy source. It was found that the nature of the carbon source profoundly influenced the cellular potassium content, especially at low dilution rates, but that these differences could not be correlated with any differences in relative growth rate (i.e., α/α max. And although small amounts of potassium seemingly were needed to serve in osmoregulation and in the cotransport of some acidic carbon sources (lactate and citrate), these requirements were negligible. Independent of carbon source, a strong correlation existed between the intracellular potassium concentration and the yield value on oxygen (Y O), and between cellular potassium concentration and growth rate. From these two correlations it was concluded that potassium probably was involved mainly in processes associated with ATP synthesis in this yeast. Finally the effect of the addition of NaCl to the medium was tested with glucose-containing cultures that were either carbon- or potassium-limited. Up to a concentration of 20 g/l, NaCl was without influence on Y O, Y glucose and q O 2, but effected a slight increase in the cellular potassium content of the potassium-limited cells and a decrease in that of the glucose-limited cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...