ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-27
    Description: A configuration concept for augmenting the lift capability of low aspect ratio, thin wings, typically used on fighter aircraft was investigated. The fluid strake concept uses a jet sheet formed by blowing from a series of small orifices located in the side of the fuselage ahead of the wing to generate a stable vortex flow over the wing at high angle of attack. The effect of the location of the fluid strake relative to the wing was investigated for three different designs of the in-line orifices using a half-span model tested in a 7 by 10 foot low speed tunnel. Based on the results of the low speed test, a jet sheet producing module was incorporated into a NASA general research fighter model and tested in the Langley 7 by 10 foot high speed tunnel to determine the effectiveness of the fluid strake as a lift-enhancement device in the high-speed maneuver regime. Tests were conducted over a Mach number range from 0.3 to 0.8, with a jet momentum coefficient range from 0 to 0.24. Significant lift increments resulted at the higher angles of attack and drag polars were improved.
    Keywords: AERODYNAMICS
    Type: NASA-CR-158904 , NOR-78-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: A configuration concept for developing vortex lift, which replaces the physical wing strake with a jet sheet generated fluid strake, was investigated on a general research fighter model. The vertical and horizontal location of the jet sheet with respect to the wing leading edge was studied over a momentum coefficient range from 0 to 0.24 in the Langley 7- by 10-foot high speed tunnel over a Mach number range from 0.3 to 0.8. The angle of attack range studied was from -2 to 30 deg at sideslip angles of 0, -5, and 5 deg. Test data are presented without analysis.
    Keywords: AERODYNAMICS
    Type: NASA-TM-74049
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Chloroplasts ; CO2-fixation ; SH-groups ; Sulfate incorporation ; Sulfite incorporation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In addition to membrane translocation, measured in the dark, it was found that pre-illumination of the chloroplasts resulted in an enhancement of sulfate uptake by 25% and of sulfite uptake by 55% as soon as the concentration of the ion in the incubation medium exceeded 2 mmol l-1. This amount which is additionally taken up after pre-illumination is less readily exchanged for other ions. Kinetics of the uptake in relation to pre-illumination time and to light intensity closely parallel those of titration of SH-groups by 5,5′-dithiobis (2-nitrobenzoic acid). As a consequence, 10-6 mol l-1 DCMU completely inhibits the light triggered increase of uptake of both ions. Uncoupling with 10-6 mol l-1 CCCP increases the light induced 35SO 3 2- binding, but decreases that of 35SO 4 2- , demonstrating the need of ATP formation to initiate sulfate reduction. Rates of uptake, measured at different intensities of pre-illumination under nitrogen or in the presence of bicarbonate, suggest that the presence of a carbon skeleton increases the binding rate for both ions. With respect to 35SO 4 2- , the data further indicate a rate limiting step (ATP sulfurylase or adenosine 5′-phosphosulfate sulfotransferase) which is activated by light, thus representing a control step to harmonize the rate of CO2 fixation and of sulfate incorporation. On the contrary, 35SO 3 2- is directly bound in relation to the amount of SH-groups, which in turn are created by the photosynthetic electron transport, resulting in Car-S-SO 3 - . Since the formation of SH-groups is maximal already at low light intensities, no effective control step for SO 3 2- incorporation is indicated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Chloroplasts ; Chloroplast lamellae ; Spinaeia ; Sulfate incorporation ; Sulfite incorporation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 35SO2, 35SO 3 2- , and 35SO 4 2- , respectively, were applied to leaves of Spinacia oleracea L. for 60 min in the light. Thereafter, the specific activity was determined in the organelles separated by means of sucrose density gradient centrifugation. In mitochondria and peroxisomes, the specific activity was equally distributed in their protein moieties. After application of 35SO2 or 35SO 3 2- , the chloroplast lamellae are characterized by elevated specific activity, which is not found after application of 35SO 4 2- . Chloroplast stroma shows a low specific incorporation rate after application of either compound, which may be due to the low turnover rate of Fraction I protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...