ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (4)
  • Computational Chemistry and Molecular Modeling  (3)
  • Wiley-Blackwell  (7)
  • 1975-1979  (5)
  • 1970-1974  (2)
Collection
Keywords
Publisher
  • Wiley-Blackwell  (7)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2401-2415 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Interaction between polylysine and DNA's of varied G + C contents was studied using thermal denaturation and circular dichroism (CD). For each complex there is one melting band at a lower temperature tm, corresponding to the helix-coil transition of free base pairs, and another band at a higher temperature t′m, corresponding to the transition of polylysine-bound base pairs. For free base pairs, with natural DNA's and poly(dA-dT) a linear relation is observed between the tm and the G + C content of the particular DNA used. This is not true with poly(dG)·poly(dC), which has a tm about 20°C lower than the extrapolated value for DNA of 100% G + C. For polylysine-bound base pairs, a linear relation is also observed between the t′m and the G + C content of natural DNA's but neither poly(dA-dT) nor poly(dG)·poly(dC) complexes follow this relationship. The dependence of melting temperature on composition, expressed as dtm/dXG·C, where XG·C is the fraction of G·C pairs, is 60°C for free base pairs and only 21°C for polylysine-bound base pairs. This reduction in compositional dependence of Tm is similar to that observed for pure DNA in high ionic strength. Although the t′m of polylysine-poly(dA-dT) is 9°C lower than the extrapolated value for 0% G + C in EDTA buffer, it is independent of ionic strength in the medium and is equal to the tm0 extrapolated from the linear plot of tm against log Na+. There is also a noticeable similarity in the CD spectra of polylysine· and polyarginine·DNA complexes, except for complexes with poly(dA-dT). The calculated CD spectrum of polylysine-bound poly(dA-dT) is substantially different from that of polyarginine-bound poly(dA-dT).
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 765-788 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Exact solutions are obtained for the time dependence of the extent of irreversible binding of ligands that cover more than one lattice site to a homogeneous one-dimensional lattice. The binding may be cooperative or noncooperative and the lattice either finite or infinite. Although the form of the solution is most convenient when the ligand concentration is buffered, exact numerical or approximate analytical solutions, including upper and lower bounds, can be derived for the case of variable ligand concentration as well. The physical reason behind the relative simplicity of the kinetics of irreversible as opposed to reversible binding in such systems is discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 18 (1979), S. 2037-2050 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Many ligands, including basic polypeptides, histones, and other proteins bind nonspecifically to DNA in such a way as to render unavailable for further binding several contiguous sites (generally bases or base pairs). An accurate description of the kinetics of such large ligand binding requires a more complex theoretical analysis than does the study of the binding of small ligands to DNA. An exact analytical solution of the problem does not appear feasible. Instead, a Monte Carlo approach is developed which provides an essentially exact numerical solution by simulating the binding experiment using a model one-dimensional lattice to represent the DNA molecule. For the limiting cases of totally irreversible binding and of instantaneous redistribution of bound ligands along the lattice, relatively simple equations can be written and solved for the binding kinetics. These solutions and their realms of applicability are discussed in some detail.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An upper bound for E0, which has been derived from the conjugate eigenvalue problem by Hall, is discussed. It is emphasized that the bound is only guaranteed when V is negative-definite. An alternative bound is presented which is free from this restriction, and the underlying iterative procedure is given. Hall's result is generalized to admit internuclear distances, and the theory is illustrated by a one-dimensional system with delta-function potentials. Some disadvantages of the approach are mentioned.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 11 (1977), S. 881-884 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Some of Moccia's formulas (Int. J. Quant. Chem. 8, 293 (1974)) for corrections to “not completely optimized variational parameters” are compared with those resulting from a perturbation theory analysis. It is not possible to choose the zero-order Hamiltonian (at least not in any simple way) so as to get exact agreement, but one choice does come close.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 15 (1979), S. 147-167 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We consider the problem of determining variational, external-field-dependent corrections to nonoptimal zero-field nonlinear parameters. Both a direct analytic perturbation analysis and finite perturbation methods are described in a general way and in detail for the SCF approximation. The abstract theory is illustrated by reference to the results of several explicit calculations. Also, the sensitivity of the results to the choice of zero-field values is discussed.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 17 (1973), S. 849-861 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The modulus of a fiber can be increased by plying with it a higher-modulus fiber. In this case, the modulus of the combination is characterized by a springs-in-parallel model, and the modulus of the composite is a linear function of the per cent of the second fiber in the composite. Another method of obtaining reinforcement is to melt-blend a higher-modulus polymer with the substrate polymer. With polyamides, this leads to a certain degree of amide interchange and block copolymer formation which depends on the compatibility of the polymers as well as on the usual kinetic factors. If the dispersion of the higher-modulus polymer is such that aggregate size is relatively large (e.g., ≥500 Å) and if the adhesion between the two polymers is good, a springs-in-parallel-type reinforcement is the best which can be obtained. In melt-blend polyamides, a “nonclassical” phenomenon in reinforcement has been noted when the diameters of the dispersed aggregates are ≤500 Å and when there are a relatively high number of hydrogen bonding sites on both polymer components. In this case, it appears that moduli appreciably higher than predicted from a springs-in-parallel model are obtained as well as higher than expected Tg values. A mechanism is proposed to account for this “nonclassical” behavior along with data to support it. Another type of anomaly is observed when the components of the blend are isomorphous. In this case, the reinforcement is considerably less than expected.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...