ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Soil  (2)
  • Chloride uptake (root)  (1)
  • 1980-1984  (3)
Collection
Publisher
Years
  • 1980-1984  (3)
Year
  • 1
    ISSN: 1432-2048
    Keywords: Chloride uptake (root) ; Hordeum (ion uptake) ; Ion uptake ; Nutrient deficiency ; Phosphate uptake (root) ; Potassium uptake (root)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The extent to which uptake and transport of either phosphate, potassium or chloride are controlled by the concentration of these ions within the root, perhaps through an allosteric mechanism, was investigated with young barley plants in nutrient solution culture. Plants were grown with their roots divided between two containers, such that a single seminal root was continuously supplied with all the required nutrient ions, while the remaining four or five seminal roots were either supplied with the same solution (controls) or, temporarily, a solution lacking a particular nutrient ion (nutrient-deficient treatment). Compared with controls, there was a marked stimulation of uptake and transport of labelled ions by the single root following 24 h or more of nutrient dificiency to the remainder of the root system. This stimulation, which comprised an increased transport to the shoot and, for all ions except Cl-, increased transport to the remainder of the root system, took place without appreciable change in the concentration of particular ions within the single root. However, nutrient deficiency quickly caused a lower concentration of ions in the shoot and the remaining roots. The results are discussed in relation to various mechanisms, proposed in the literature, by which the coordination of ion uptake and transport may be maintained within the plant. We suggest that under our conditions any putative allosteric control of uptake and transport by root cortical cells was masked by an alternative mechanism, in which ion influx appears to be regulated by ion efflux to the xylem, perhaps controlled by the concentration of particular ions recycled in the phloem to the root from the shoot.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 54 (1980), S. 77-94 
    ISSN: 1573-5036
    Keywords: Nutrients ; Oxygen ; Roots ; Soil ; Toxins ; Waterlogging ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of waterlogging on concentrations of gases and various solutes dissolved in the soil water were investigated in the laboratory, to determine whether the early disruption to the growth of wheat was most closely associated with depletion of dissolved oxygen, accumulation of toxins, or changes in concentrations of nutrient ions in the soil water. Waterlogging slowed shoot fresh weight accumulation, leaf extension and nodal root growth; it also caused death of the seminal root system and early senescence of the lower leaves. However, the shoot dry weight initially increased above that of the non-waterlogged controls, and thus was not a reliable indicator of the early restriction to plant growth and development. The symptoms of damage to shoots and roots were attributed to the fall in soil oxygen concentrations, rather than to any decrease in concentration of inorganic nutrients in the soil water, or to the accumulation of any other measured solutes to toxic concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Barley ; Cereals ; Root distribution ; Root growth ; Soil ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A study was made of the relationship between the number of roots (Nr) observed on unit area of the freshly exposed, horizontal faces of soil cores, and the amounts of roots (per unit volume) present in the same cores. Soil cores, 7 cm diameter, were extracted to depths of 1 m from cereal crops in 1976 at three field sites located on clay soils. Sampling was either at the start of stem elongation, or at anthesis. Estimates of root length per unit soil volume (L) were derived from Nr by assuming random orientation of roots in the soil. Values of L were found to be highly correlated with the measured lengths of both the main roots (root axes) and the total roots (axes and laterals) washed from the soil at a given growth stage, for each of the soils. On average, L was 3.3 times the length of root axes washed from the soil, and was 0.42 times the length of total roots, but there was appreciable variation between different growth stages and field sites. Possible factors giving rise to differences between L and the measured lengths of roots are discussed. Estimates of root length from observation of soil cores may nonetheless provide a suitable basis for rapidly comparing therelative distribution of roots down the soil profile under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...