ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell wall  (2)
  • Springer  (2)
  • Annual Reviews
  • Society of Exploration Geophysicists (SEG)
  • 1980-1984  (2)
  • 1
    ISSN: 1615-6102
    Keywords: Boergesenia forbesii ; Cellulose microfibrils ; Cell wall ; Fluorescent brightening agent ; Freeze fracture ; Terminal synthesizing complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Wounding cells ofBoergesenia forbesii (Harvey) Feldmann induces the synchronous formation of numerous protoplasts which synthesize large cellulose microfibrils within 2–3 hours after wounding. The microfibrils appear to be assembled by linear terminal synthesizing complexes (TCs). TC subunits appear on both E- and P-faces of the plasma membrane, thus suggesting the occurrence of a transmembrane complex. The direction of microfibril synthesis is random during primary wall assembly and becomes ordered during secondary wall assembly. The average density of TCs during secondary wall deposition is 1.7/μm2, and the average length of the TC is 510 nm. TC organization is similar to that ofValonia macrophysa; however, the larger TCs ofBoergesenia (510 nm vs. 350 nm) produce correspondingly larger microfibrils (30 nm vs. 20 nm). The effects of a fluorescent brightening agent (FBA), Tinopal LPW, on cell wall regeneration ofBoergesenia protoplasts was investigated. The threshold level of Tinopal LPW for interfering with microfibril assembly is 1.5 μM. At 95 μM Tinopal (for short periods up to 15 minutes), microfibril impressions have atypical spherical impressions at their termini. At longer incubations (24 hours), TCs and microfibril impressions are absent. When washed free of Tinopal, the protoplasts eventually resume normal wall assembly; however, TCs do not reappear until at least 30 minutes after the removal of Tinopal. In consideration of the presence of ordered TCs before FBA treatment, their random distribution upon recovery implies an intermediate stage of assembly or possiblyde novo synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Fluorescent brighteners ; Inhibitors ; Cell wall ; Cellulose microfibrils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Calcofluor White ST is a fluorescent brightener that has previously been shown to alter cellulose ribbon assembly in the bacteriumAcetobacter xylinum. In this report, we demonstrate that Calcofluor also disrupts cell wall assembly in the eukaryotic algaOocystis apiculata. When observed with polarization microscopy, walls altered by Calcofluor show reduced birefringence relative to controls. Electron microscopy has shown that these altered walls contain regions which consist primarily of amorphous material and which generally lack organized microfibrils. We propose that wall alteration occurs because Calcofluor binds with the glucan chains polymerized by the cellulose synthesizing enzymes as they are produced. As a consequence, the glucan chains are prevented from co-crystallizing to form microfibrils. Synthesis of normal walls resumes when Calcofluor is removed, which is consistent with our proposal that Calcofluor acts by direct physical interaction with newly synthesized wall components. Several types of fluorescent patterns at the cell wall/plasmalemma interface have also been observed following Calcofluor treatment. Fluorescent spots, striations; helical bands, and lens-shaped thickenings have been documented. Each of these patterns may be the result of the interaction of Calcofluor with cellulose at different spatial or temporal levels or from varying concentrations of the brightener itself. Helical bands and lens-shaped thickenings also have been examined with the electron microscope. Like other regions of wall alteration, they are found to contain primarily amorphous material. Finally, we note that cells with severely disrupted walls are unable to complete their normal life cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...