ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chicken Embryo  (1)
  • Na current  (1)
  • Springer  (2)
  • American Association for the Advancement of Science (AAAS)
  • 1980-1984  (2)
  • 1975-1979
Collection
Publisher
  • Springer  (2)
  • American Association for the Advancement of Science (AAAS)
Years
  • 1980-1984  (2)
  • 1975-1979
Year
  • 1
    ISSN: 1432-0827
    Keywords: 1,25(OH)2D3 Receptor ; Chicken Duodenal Cytosol ; Chicken Embryo ; Affinity ; 1,25(OH)2D3 Concentration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary This study presents measurements of serum vitamin D metabolites, calcium and phosphorus as well as measurements of the equilibrium dissociation constant for duodenal 1,25(OH)2D3 receptor in 15-, 18-, 19-, and 20-day chick embryos in comparison to that in 1- and 118-day-old chicks and to vitamin D-deficient chicks. The present results showed that: (a) serum 1,25(OH)2D and 24,25(OH)2D levels rise from 15 and 18 to days 19 and 20 of embryonic development while serum phosphate levels are stable; (b) serum calcium levels rise at hatching to adult levels; (c) the duodenal 1,25(OH)2D3 receptor is detectable in 15-day-old embryo and has a Kd similar to that of 118-day-old vitamin D-replete chicks; and (d) the activity of 1,25(OH)2D3 receptor in chick duodenal cytosol is maximal at hatching.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Na current ; axoplasmic microtubules ; 260K proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Effects of the reagents suppressing or supporting axoplasmic microtubule assembly were studied on the Na ionic current of squid giant axons by perfusing the axon internally with the solution containing the reagent. Among the reagents suppressing the assembly, colchicine, vinblastine, podophyllotoxin, sulfhydryl reagents such as DTNB and NEM, and chaotropic anions such as iodide and bromide, were examined. These reagents reduced maximum Na conductance and shifted the voltage dependence of steady-state Na activation in a depolarizing direction along the voltage axis. They also made the voltage dependence less steep, but did not affect sodium inactivation appreciably. Effects on Na ionic current of reagents which support microtubule assembly (Taxol, DMSO, D2O and temperature) were opposite the effects of those agents suppressing assembly. At the same time, we demonstrated that after Na currents were partially reduced, they could be restored by internally perfusing the axon with a solution containing microtubule proteins, 260K proteins and cAMP under conditions favorable for microtubule assembly. For full restoration, it was found that the following conditions were necessary: (1) The microenvironment within the axon is suitable for microtubule assembly. (2) Tubulins incorporated into microtubules are fully tyrosinated at their C-termini. (3) A peripheral protein having a molecular weight of 260,000 daltons (260K protein) is indispensable. These results suggest that axoplasmic microtubules and 260K proteins in the structure underlying the axolemma play a role in generating Na currents in squid giant axons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...