ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 3083-3112 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Poly[3,3-bis(hydroxymethyl)oxetane], PBHMO, was prepared in high molecular weight (ηinh up to 5.2) by polymerizing the trimethylsilylether of 3,3-bis(hydroxymethyl)oxetane with the i-Bu3Al-0.7 H2O cationic catalyst at low temperature, followed by hydrolysis. PBHMO is crystalline, very high melting (314°C) and highly insoluble, much like its analog, cellulose. It is soluble in 75% H2SO4 at 30°C, being 65% converted to the acid sulfate ester; these conditions are useful for viscosity measurement, since the degradation rate is low and at least an order of magnitude less than for cellulose in this solvent. PBHMO can be prepared as oriented films and fibers using the lower melting diacetate (184°C) which can be melt or solution (CHCl3) fabricated and then the oriented forms saponified to oriented PBHMO. BHMO can be directly polymerized to low molecular weight, perhaps somewhat branched, PBHMO (ηinh 0.1) with trifluoromethanesulfonic acid catalyst at room temperature. Poly(3-methyl-3-hydroxymethyloxetane), (PMHMO), prepared in high molecular weight (ηinh up to 3.8) by the same method used for PBHMO, is more soluble and lower melting (165°C) than PBHMO, appears to be atactic and can be compression molded at 195°C to a tough, clear film which is readily oriented. Copolymers of BHMO with MHMO are crystalline over the entire composition range with a linear variation of Tm with composition, a new example of isomorphism in the polymer area.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 27 (1989), S. 3113-3149 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The spontaneous polymer formed from 3-hydroxyoxetane (HO), as first reported by Wojtowicz and Polak, is linear, low molecular weight, water-soluble, atactic, poly(3-hydroxyoxetane) (PHO) of high crystallinity with —OCH2CH(OH)CH2OH end units. The highly crystalline nature of this atactic polymer may be related to the crystalline nature of atactic poly(vinyl alcohol) since PHO can be considered a copolymer of vinyl alcohol and formaldehyde. Spontaneous PHO apparently is formed in a cationic polymerization by the carboxylic acids produced by the air oxidation of HO on standing at room temperature for several months. The polymerization can be duplicated by the addition of 2% hydroxyacetic acid to HO. The rate of this unusual cationic polymerization increases greatly with acid strength, e.g., trifluoromethanesulfonic acid reacts explosively with pure HO. A mechanism is proposed for this cationic polymerization. High molecular weight, water-soluble, linear atactic, and highly crystalline PHO (mp = 155°C) was made by polymerizing the trimethylsilyl ether of HO with the i-Bu3Al-0.7 H2O cationic catalyst followed by hydrolysis. Two 1H-NMR methods for measuring the tacticity of PHO were developed based on finding two different types of methylene units at 400 MHz with the methine protons decoupled. Also, an 1H-NMR method was developed for measuring branching in HO polymers. High molecular weight, linear PHO with enhanced isotacticity (80%) has been obtained in low yield as a water-insoluble fraction with Tm = 223°C. The low molecular weight PHO prepared previously by the base-catalyzed, rearrangement polymerization of glycidol is highly branched.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...