ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
Collection
Keywords
Publisher
Years
Year
  • 1
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract The application of the theory of chaotic dynamical systems has gradually evolved from computer simulations to assessment of erratic behavior of physical, chemical, and biological systems. Whereas physical and chemical systems lend themselves to fairly good experimental control, biologic systems, because of their inherent complexity, are limited in this respect. This has not, however, prevented a number of investigators from attempting to understand many biologic periodicities. This has been especially true regarding cardiac dynamics: the spontaneous beating of coupled and non-coupled cardiac pacemakers provides a convenient comparison to the dynamics of oscillating systems of the physical sciences. One potentially important hypothesis regarding cardiac dynamics put forth by Goldberger and colleagues, is that normal heart beat fluctuations are chaotic, and are characterized by a 1/f-like power spectrum. To evaluate these conjectures, we studied the heart beat intervals (R wave toR wave of the electocardiogram) of isolated, perfused rat hearts and their response to a variety of external perturbations. The results indicate bifurcations between complex patterns, states with positive dynamical entropies, and low values of fractal dimensions frequently seen in physical, chemical and cellular systems, as well as power law scaling of the spectrum. Additionally, these dynamics can be modeled by a simple, discrete map, which has been used to describe the dynamics of the Belousov-Zhabotinsky reaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-09-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.
    Keywords: COMPOSITE MATERIALS
    Type: NASA-CR-176412 , NAS 1.26:176412 , CCMS-85-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Tests were performed to determine the damage states in quasi-isotropic graphite/epoxy laminates with center holes caused by cyclic tensile loading. The influence of the stacking sequence on the initiation and interaction of damage modes and the relationship between damage, strength, stiffness, and life of the laminates were also studied. X-ray radiography, moire interferometry, and stiffness change were used to monitor damage. Fatigue damage in both laminates began with matrix cracks around the holes leading to delaminations. In laminates cycled at the same percent of notched tensile strength the stacking sequence influenced the density of the matrix cracks and the modes and distribution of the damage. Ply cracking was also caused by the stacking sequence. The damage states in the two laminates produced stiffness changes of 15 to 20 percent, different rates of change in residual strength, and a factor of two to four difference in fatigue life. It was determined that continued cyclic loading produced matrix cracks which led to fatigue of the laminates.
    Keywords: COMPOSITE MATERIALS
    Type: Recent advances in composites in the United States and Japan; Jun 06, 1983 - Jun 08, 1983; Hampton, VA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...