ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 63 (1985), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Respiratory characteristics of wheat (Triticum aestivum L. cvs Gabo and WW15), mung bean (Vigna radiata L. Wilczek cv. Celera) and sunflower (Helianthus annuus L. cv. Sunfola) were studied in plants grown under a normal CO2 concentration and in air containing an additional 340 (or 250) μl l−1 CO2. Such an increase in global atmospheric CO2 concentration has been forecast for about the middle of the next century. The aim was to measure the effect of high CO2 on respiration and its components. Polarographic and, with wheat, CO2 exchange techniques were used. The capacity of the alternative pathway of respiration in roots was determined polarographically in the presence of 0.1 mM KCN. The actual rate of alternative pathway respiration was assessed by reduction in oxygen consumption caused by 10 mM salicylhydroxamic acid.Each species responded differently. In wheat, growth in high atmospheric CO2 was associated with up to 45% reduction in respiration by both roots and whole plants. Use of respiratory inhibitors in polarographic measurements on wheat roots implicated reduction in the degree of engagement of the alternative pathway as a major contributor to this reduced respiratory activity of high-CO2 plants. No change was found in the total sugar content per unit wheat root dry weight as a result of high CO2. In none of the species was there an increase in the absolute, or relative, contribution by the alternative pathway to total respiration of the root systems. Thus the improved photosynthetic assimilate supply of plants grown in high CO2 did not lead to increased diversion of carbon through the non-phosphorylating alternative pathway of respiration in the root. On the contrary, in wheat grown in high CO2 the reduced loss of carbon through that route must have contributed to their larger dry weight.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 7 (1985), S. 77-90 
    ISSN: 1573-5079
    Keywords: carbon dioxide ; C4 ; Paspalum plicatulum ; water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 μmol (CO2) mol-1 (air)) or with 250 μmol mol-1 enrichment. Harvesting was by several cycles of defoliation. With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...