ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (12)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: Critical reviews in plant sciences (ISSN 0735-2689); Volume 2; 4; 317-65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Graviperception by plant roots is believed to occur via the sedimentation of amyloplasts in columella cells of the root cap. This physical stimulus results in an accumulation of calcium on the lower side of the cap, which in turn induces gravicurvature. In this paper we present a model for root gravitropism integrating gravity-induced changes in electrical potential, cytochemical localization of calcium in cells of gravistimulated roots, and the interdependence of calcium and auxin movement. Key features of the model are that 1) gravity-induced redistribution of calcium is an early event in the transduction mechanism, and 2) apoplastic movement of calcium through the root-cap mucilage may be an important component of the pathway for calcium movement.
    Keywords: Life Sciences (General)
    Type: American journal of botany (ISSN 0002-9122); Volume 73; 4; 574-87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The role of calcium redistribution in the responding region of the root is examined, however, the potential connection between calcium and auxin redistribution in the elongation zone is not found. The following items are examined: (1) the effect of gravity on calcium movement across the elongation zone; (2) the effect of gravity on auxin movement across the elongation zone; and (3) the effect of calcium on auxin movement across the elongation zone. It is indicated that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that calcium increases the total transport of auxin across the root. Gravistimulation is apparently necessary for the enhancing effect of calcium on lateral auxin movement, and it is possible that the preferential downward movement of calcium across the elongation zone of gravistimulated roots plays a role in establishing the auxin asymmetry proposed to cause positive gravitropic curvature.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: NASA. Washington NASA Space Biol. Program:; p 18-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-16
    Description: We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.
    Keywords: Life Sciences (General)
    Type: Physiologia plantarum (ISSN 0031-9317); 67; 570-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: Recent evidence indicates a role for calcium and calmodulin in the gravitropic response of primary roots of maize (Zea mays, L.). We examined this possibility by testing the relationship between calmodulin activity and gravitropic sensitivity in roots of the maize cultivars Merit and B73 x Missouri 17. Roots of the Merit cultivar require light to the gravitropically competent. The gravitropic response of the Missouri cultivar is independent of light. The occurrence of calmodulin in primary roots of these maize cultivars was tested by affinity gel chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with bovine brain calmodulin as standard. The distribution of calmodulin activity was measured using both the phosphodiesterase and NAD kinase assays for calmodulin. These assays were performed on whole tissue segments, crude extracts, and purified extracts. In light-grown seedlings of the Merit cultivar or in either dark- or light-grown seedlings of the Missouri cultivar, calmodulin activity per millimeter of root tissue was about 4-fold higher in the apical millimeter than in the subtending 3 millimeters. Calmodulin activity was very low in the apical millimeter of roots of dark-grown (gravitropically nonresponsive) seedlings of the Merit cultivar. Upon illumination, the calmodulin activity in the apical millimeter increased to a level comparable to that of light-grown seedlings and the roots became gravitropically competent. The time course of the development of gravitropic sensitivity following illumination paralleled the time course of the increase in calmodulin activity in the apical millimeter of the root. The results are consistent with the suggestion that calmodulin plays an important role in the gravitropic response of roots.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); 84; 1337-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.
    Keywords: Life Sciences (General)
    Type: Journal of plant growth regulation (ISSN 0721-7595); 5; 73-83
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H]IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); 77; 824-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.
    Keywords: Life Sciences (General)
    Type: Physiologia plantarum (ISSN 0031-9317); 72; 466-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); 86; 885-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: We examined the influence of aluminum and calcium (and certain other cations) on hormone transport in corn roots. When aluminum was applied unilaterally to the caps of 15 mm apical root sections the roots curved strongly away from the aluminum. When aluminum was applied unilaterally to the cap and 3H-indole-3-acetic acid was applied to the basal cut surface twice as much radioactivity (assumed to be IAA) accumulated on the concave side of the curved root as on the convex side. Auxin transport in the apical region of intact roots was preferentially basipetal, with a polarity (basipetal transport divided by acropetal transport) of 6.3. In decapped 5 mm apical root segments, auxin transport was acropetally polar (polarity = 0.63). Application of aluminum to the root cap strongly promoted acropetal transport of auxin reducing polarity from 6.3 to 2.1. Application of calcium to the root cap enhanced basipetal movement of auxin, increasing polarity from 6.3 to 7.6. Application of the calcium chelator, ethylene-glycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid, greatly decreased basipetal auxin movement, reducing polarity from 6.3 to 3.7. Transport of label after application of tritiated abscisic acid showed no polarity and was not affected by calcium or aluminum. The results indicate that the root cap is particularly important in maintaining basipetal polarity of auxin transport in primary roots of corn. The induction of root curvature by unilateral application of aluminum or calcium to root caps is likely to result from localized effects of these ions on auxin transport. The findings are discussed relative to the possible role of calcium redistribution in the gravitropic curvature of roots and the possibility of calmodulin involvement in the action of calcium and aluminum on auxin transport.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); 86; 890-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...