ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 50 (1988), S. 379-409 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract The nonlinear behavior of a particular Kolmogorov-type exploitation differential equation system assembled by May (1973,Stability and Complexity in Model Ecosystems, Princeton University Press) from predator and prey components developed by Leslie (1948,Biometrica 35, 213–245) and Holling (1973,Mem. Entomol. Soc. Can. 45, 1–60), respectively, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature dependent mite interaction on fruit trees. The most significant result of this analysis is that, in addition to the temperature ranges over which the single community equilibrium point of the system iseither globally stableor gives rise to a globally stable limit cycle, there can also exist a range wherein multiple stable states occur. These stable states consist of a focus (spiral point) and a limit cycle, separated from each other in the phase plane by an unstable limit cycle. The ecological implications of such metastability, hysteresis and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system and the biological control of mite populations are discussed. It is further suggested that a model of this sort which possesses a single community equilibrium point may be more useful for representing outbreak phenomena, especially in the presence of oscillations, than the non-Kolmogorov predator-prey systems possessing three community equilibrium points, two of which are stable and the other a saddle point, traditionally employed for this purpose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental and applied acarology 5 (1988), S. 265-292 
    ISSN: 1572-9702
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nonlinear behavior of the Holling-Tanner predatory-prey differential equation system, employed by R.M. May to illustrate the apparent robustness of Kolmogorov’s Theorem when applied to such exploitation systems, is re-examined by means of the numerical bifurcation code AUTO 86 with model parameters chosen appropriately for a temperature-dependent mite interaction on fruit trees. The most significant result of this analysis is that there exists a temperature range wherein multiple stable states can occur, in direct violation of May’s interpretation of this system’s satisfaction of Kolmogorov’s Theorem: namely, that linear stability predictions have global consequences. In particular these stable states consist of a focus (spiral point) and a limit cycle separated from each other in the phase plane by an unstable limit cycle, all of which are associated with the single community equilibrium point of the system. The ecological implications of such metastability, hysteresis, and threshold behavior for the occurrence of outbreaks, the persistence of oscillations, the resiliency of the system, and the biological control of mite populations are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...