ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
Collection
Years
Year
  • 1
    Publication Date: 1988-05-01
    Description: Soil-erodibility indices were investigated in two regions of Ontario to evaluate their seasonal variation and differences between soil types. Shear strength and water-stable aggregates 〉0.5 mm were strongly negatively correlated with gravimetric soil water content for a Guelph sandy loam soil in southwestern Ontario. Similar variation of shear strength was estimated in three other southwestern Ontario surface soils as a result of seasonal changes in moisture content. Shear strength and aggregate stability increased as four eastern Ontario soils, ranging in texture from loamy sand to clay, dried and warmed following spring thaw. Laboratory incubation at constant temperature and water content showed that shear strength increased in two fine-textured soils with increasing degree days but changed very little in two coarse-textured soils. At the point-of-thaw in the field, all of the eastern Ontario soils exhibited very high values of the indices 1/shear strength and 1/aggregate stability, averaging approximately 15 times those of early July. During spring fallow and seed-bed to 10% canopy periods, the mean values of these indices were 3.7 and 1.4 times, respectively, those in early July. For winter-thaw conditions in the three southwestern Ontario soils, the index 1/shear strength averaged 17 times greater than in the summer. Spring values of this index averaged approximately twice those of summer. Results suggest that Ontario soils are much more susceptible to erosion under thaw and spring conditions than later during the growing season. Soil water content and soil warming may affect the re-establishment of resistance to erosion in soils rendered erodible by freezing, thawing, and saturation. Key words: Erodibility, shear strength, aggregate stability
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-05-01
    Description: A study was conducted to evaluate the potential seasonal variation in soil erodibility (K) for selected soils of southwestern Ontario. Field-plot data, laboratory flume/rainfall-simulator studies, and a K-factor prediction equation were used to assess the potential magnitude of the seasonal variation of soil erodibility. Field-plot studies for a Guelph loam soil revealed that values were highest in the winter-spring thaw period (March) with a ratio of K seasonal to K annual (Kc) of 10. Laboratory flume and rainfall simulations with Fox sand, Haldimand silty clay, and Colwood silt loam soils were conducted with soil moisture and internal drainage varied to simulate seasonal conditions. The results corresponded with those observed in the field study, with highest K values occurring under simulated winter-spring thaw conditions (values of Kc =.4 – 4.0) and lowest values under simulated summer conditions (Kc 
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-08-01
    Print ISSN: 0008-4077
    Electronic ISSN: 1480-3313
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1986-12-01
    Description: A computer model has been used to estimate soil loss and sediment yield from irregular field‐size units of small watersheds. Input to the model includes spring data (i.e. relating to February through May) for the independent variables of the Universal Soil Loss Equation, and for factors such as surface roughness, an index of overland runoff, and proximity to the stream. Output from the model includes maps of seasonal estimates of potential soil losses, field sediment delivery ratios, and expected sediment yields. On the basis of selected erosion and sediment yield tolerances, the output information has been analysed to identify watershed areas which (1) exhibit both erosion and sediment yield problems; (2) exhibit only erosion problems; (3) exhibit only sediment yield problems; and (4) exhibit neither erosion nor sediment yield problems. The percentage of the watershed area in each category and the percentage of the watershed soil loss and sediment loads contributed by each category are also identified. Application of the procedure for planning remedial control programs for five watersheds is discussed. Copyright © 1986 John Wiley & Sons, Ltd
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...