ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 26 (1988), S. 1409-1424 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dilation of poly(vinyl benzoate) and poly(vinyl butyral) accompanying sorption of carbon dioxide is measured with a cathetometer under pressures up to 50 atm at 25°C. Sorption isotherms for carbon dioxide in these polymers were also determined gravimetrically. Each dilation isotherm plotted versus pressure, as well as the sorption isotherm, showed an inflection point corresponding to the glass transition of the polymer-gas system. The dilation isotherms changed their form at that point from concave to convex to the pressure axis or to a straight line. Dilation and sorption isotherms exhibited time-dependent hysteresis below the inflection point but not above the point. Partial molar volumes of carbon dioxide in polymers, which were determined from dilation and sorption data above the point, were found to be independent of concentration and larger than those below the point. The latter volumes depended on concentration. Based upon the extended dual-mode sorption concept, which takes account of plasticization of polymer by sorbed gas, a dilation model was developed. Dilation data were described well by the model.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 37 (1989), S. 1513-1525 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Sorption and permeation of CO2 in poly(ethylene terephthalate) crystallized by sorption of high-pressure CO2 were examined below 1 atm at temperatures from 15 to 65°C. A large solubility and a high permeability of CO2 in this specimen were observed compared to poly(ethylene terephthalate) crystallized by thermal annealing to a similar degree. A large unrelaxed volume is expected to be left in the specimen after removal of high-pressure CO2 compared to the data of other PET samples. The thermal history during the measurements up to 65°C, which causes relaxation of the specimen, was shown to decrease CO2 solubility. On the other hand, permeation data after annealing show not only decreased permeability but also increased apparent diffusivity. The results mean a lower mobility of gases sorbed in the unrelaxed volume than that of ordinarily dissolved gases, which corresponds to the partial immobilization model.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...