ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 31 (1986), S. 2231-2265 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Propylene and ethylene polymerization in liquid and gas media are described by a multigrain particle model. External boundary layer heat and mass transfer effects are investigated for various catalysts and operating conditions. For high-activity catalysts used in slurry, external film mass transfer effects may be significant. For gas-phase polymerization of propylene or ethylene, the model predicts significant particle overheating at short times, which may explain the particle sticking and agglomeration problems sometimes observed in industrial reactors.
    Additional Material: 43 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 36 (1988), S. 1513-1513 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 2935-2960 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Propylene and ethylene polymerization in liquid and gas media are described by a multigrain particle model. Intraparticle heat and mass transfer effects are investigated for a range of catalyst activities. For slurry polymerization, intraparticle mass transfer effects may be significant at both the macroparticle and microparticle level; however, for normal gas phase polymerization, microparticle mass transfer effects appear more likely to be important. Intraparticle temperature gradients would appear to be negligible under most normal operating conditions.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 5451-5479 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Many processes for polymerization of olefins employ laboratory, pilot plant, or full-scale liquid-phase polymerization reactors with monomer introduced as a gas. Criteria for the presence of gas-liquid mass transfer resistance in these systems are determined in terms of observed reaction rate or loading of a heterogeneous catalyst of given intrinsic activity. The effects of variables such as reactor size and configuration, temperature, and soluble polymer are also examined. The equilibrium monomer concentrations of ethylene in hexane and propylene in heptane are calculated through a modified Benedict-Webb-Rubin equation, and some calculations for ethylene-propylene mixtures are tabulated. The general methodology for predicting gas-liquid mass transfer resistance is readily extendible to copolymerization systems.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 34 (1987), S. 2559-2574 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Reactivity ratio products for ethylene-propylene copolymerization over catalysts with two sites differing in incorporation and/or reactivity ratio product have been theoretically derived. It is shown that combination of the polymer fractions resulting from two sites can lead to large dyadic reactivity ratio products as determined by nuclear magnetic resonance. The dyadic reactivity ratio product is calculated at several different monomer ratios in the reactor, and compared to the reactivity ratio product obtained from a least-squares fit of the copolymerization equation. When the polymers are compositionally heterogeneous, the reactivity ratios derived from kinetic measurements are not meaningful.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The multigrain model for polymerization of olefins over solid catalysts is used to predict kinetic behavior, molecular weights, and polydispersities. The effects of intraparticle and external boundary layer transport resistance on the kinetic behavior and polymer properties are explored. Means for the experimental detection of intraparticle diffusion resistance are suggested. The importance of catalyst physical properties, such as the porosity, and the catalyst loading is illustrated through simulation. Finally, the hypotheses of diffusion resistance and site heterogeneity as explanations for the broad molecular weight distributions of olefin polymers are critically evaluated, and molecular weight distribution control in industrial catalysts is discussed.
    Additional Material: 33 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...