ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Mechanical impedance  (2)
  • 1985-1989  (2)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 6 (1988), S. 315-321 
    ISSN: 1432-0789
    Schlagwort(e): Biopores ; Root growth ; Transpiration ; Simulations ; Mechanical impedance ; Triticum aestivum
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Summary The use of vertical biopores by wheat (Triticum aestivum) seminal roots for easy access to the subsoil and the consequences for plant water supply and yield has been investigated by computer simulation. Parameters included were: biopore density and diameter, depth of cultivation and strength of the subsoil — all under a wide range of seasonal weather conditions. The model predicts that biopores add significantly to root penetration at depth, even at a density of 0.1% v/v of small, vertical pores, while 1.5% to 2.0% v/v can ensure maximum root penetration. When the growing season is shorter a larger number of biopores is needed to ensure timely root penetration to depth. With shallow tillage, biopores occur closer to the soil surface, and their importance is increased. Deeper root penetration invariably gives greater water uptake and transpiration, but may have a negative effect on grain yield, especially under the driest climatic conditions. An increase in early water use may result in less soil water being available during the grain-filling period. The effect of biopores on plant transpiration varies from year to year, depending on the amount of rain and its distribution in time, and on the amount of soil water stored at time of sowing.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Plant and soil 99 (1987), S. 211-218 
    ISSN: 1573-5036
    Schlagwort(e): Aeration ; Barley ; 3,5-Diiodo-4-hydroxybenzoic acid ; Extensibility ; Mechanical impedance ; Osmotic potential ; Pea ; Root elongation ; Wheat ; Young's modulus
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Summary This paper reports the results of two series of experiments. In the first the effects of DIHB on the rate of root elongation were compared on unstressed roots and on roots stressed by mechanical impedance and by inadequate levels of aeration. Barley plants were grown in beds of small glass spheres through which nutrient solution was circulated. Mechanical impedance of 25 kPa was applied by subjecting the beds to a confining pressure. Inadequate aeration was obtained by reducing the oxygen concentration in the nutrient solution to 5%. The second series examined possible effects of DIHB on the elastic modulus of root tips of wheat and pea. Elastic modulus gives an indication of the behaviour of roots in structured soil where penetration of peds can be limited by the buckling of root tips. The elastic modulus was measured in experiments of the static cantilever type on roots previously immersed in solutions of polyethylene glycol of different osmotic potential. Elastic modulus measurements can also detect any changes in turgor pressure and wilting characteristics of roots and can therefore help to identify the mechanisms of action of DIHB. DIHB caused increases in root elongation relative to controls in all cases: 26±5.7% in unstressed roots, 14±6.4% in mechanically impeded roots and 54±9.8% in roots growing in 5% oxygen. DIHB had no effect on the elastic modulus, osmotic or turgor pressure of the roots. It is concluded that DIHB acts by modifying the cell wall extensibility factor.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...