ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SOLAR PHYSICS  (5)
  • LASERS AND MASERS  (2)
  • INSTRUMENTATION AND PHOTOGRAPHY
  • 1985-1989  (7)
Collection
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: The contributions of the High Energy Flare Physics Special Session in the American Astronomical Society Solar Physics Division Meeting are reviewed. Oral and poster papers were presented on observatories and instruments available for the upcoming solar maximum. Among these are the space-based Gamma Ray Observatory, the Solar Flare and Cosmic Burst Gamma Ray Experiment on the Ulysses spacecraft, the Soft X Ray Telescope on the spacecraft Solar-A, and the balloon-based Gamma Ray Imaging Device. Ground based observatories with new capabilities include the BIMA mm-wave interferometer (Univ. of California, Berkeley; Univ. of Illinois; Univ. of Maryland), Owens Valley Radio Observatory and the Very Large Array. The highlights of the various instrument performances are reported and potential data correlations and collaborations are suggested.
    Keywords: SOLAR PHYSICS
    Type: NASA, Goddard Space Flight Center, Max '91 Workshop 2: Developments in Observations and Theory for Solar Cycle 22; p 1-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A time-dependent diffusion equation with velocity-dependent diffusion and energy-loss coefficients was solved for the case where energetic solar particles are injected into a coronal loop and then diffuse out the ends of the loop into the lower corona/chromosphere. The solution yields for the case of relativistic electrons, precipitation rates and populations which are necessary for calculating thick and thin target X-ray emission. It follows that the thick target emission is necessarily delayed with respect to the particle acceleration on injection by more than the mere travel time of the particle over the loop length. In addition the time-dependent electron population at the top of the loop is calculated. This is useful in estimating the resulting micron-wave emission. The results show relative timing differences in the different emission processes which are functions of particle species, energy and the point of injection of the particles into the loop. Equivalent quantities are calculated for non-relativistic protons.
    Keywords: SOLAR PHYSICS
    Type: NASA. Goddard Space Flight Center Rapid Fluctuations in Solar Flares; p 383-392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: It is suggested that optically small gamma-ray flares result from gradual pre-flare acceleration of protons over approximately 1,000 s by a series of magnetohydrodynamic shocks in the low corona. A fraction of the accelerated protons are trapped in the corona where they form a seed population for future acceleration. If the shock acceleration is sufficiently rapid proton energies may exceed the gamma-ray production threshold and trigger gamma-ray emission. This occurs without the total flare energy being necessarily large. Magnetic field geometry is an important parameter.
    Keywords: SOLAR PHYSICS
    Type: SH-1.3-2 , 19th Intern. Cosmic Ray Conf - Vol. 4; p 82-85; NASA-CP-2376-VOL-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Energetic solar flare particles, both electrons and protons, must survive the turbulent environment of a flaring loop and propogate to the lower corona or chromosphere in order to produce hard X-ray and gamma ray bursts. This plasma turbulence, often observed in soft X-ray line widths to be in excess of 100 km/s, is presumably capable of efficiently scattering the fast flare particles. This prevents to some degree the free streaming of accelerated particles and depending on the amplitude of the turbulence, restricts the particles to diffusive propagation along the length of the loop to the target chromosphere. In addition this turbulence is capable of performing additional acceleration of the fast particles by the second order Fermi mechanism. For compact flares with rise times 10s, the acceleration effect is small and the propagation of the particles is governed by spatial diffusion and energy loss in the ambient medium. The solution of the time dependent diffusion equation with velocity dependent diffusion and energy loss coefficients yields for the case of nonrelativistic protons particle precipitation rates which are necessary for calculating thick target gamma ray emission and also yields the total thin target emissivity.
    Keywords: SOLAR PHYSICS
    Type: SH-1.1-3 , 19th Intern. Cosmic Ray Conf - Vol. 4; p 1; NASA-CP-2376-VOL-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for differing sets of relaxation rates with emphasis on alkali metal vapors which have spontaneous emission dominated relaxation. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled alexandrite laser-pumped cesium vapor gain cell.
    Keywords: LASERS AND MASERS
    Type: Applied Physics B - Photophysics and Laser Chemistry (ISSN 0721-7269); 48; 173-182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A global time-dependent model is presented for the coronal and interplanetary shock acceleration and propagation of energetic solar flare particles. The calculations are carried out to help prove that coronal shock acceleration of solar flare particles is responsible for energetic solar flare event data gathered in interplanetary space. The model is based on the theory of diffusive shock acceleration, and requires particle speeds to be much greater than bulk velocities. Also, sufficient scattering must occur upstream and downstream of the shock for the particle scattering mean free path to be smaller than the characteristic scale lengths, which causes the same particles to encounter the shock repeatedly. A spherically symmetric shock wave is assumed, which leads to the same emission configuration for impulsively and monoenergetically emitted particles. Consideration is given to acceleration by compression at the shock front, adiabatic deceleration in the divergent downstream flow, the temporal evolution of the shock and the three-dimensional geometry of the corona. The model is used to generate normalized proton omnidirectional distributions at 1 AU and at the shock front. The spectral exhibit trends similar to those in observational data, especially proton acceleration times and the proton distribution profiles at 1 AU.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 303; 829-842
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A theory for a coherently pumped, homogeneously broadened laser is developed which predicts instability at excitations 1.6 times threshold. The system exhibits a period-doubling sequence, chaos, and a period-three window.
    Keywords: LASERS AND MASERS
    Type: Optics Communications (ISSN 0030-4018); 64; 54-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...