ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Fine roots  (1)
  • Nitrogen  (1)
  • 1985-1989  (2)
Collection
  • Articles  (2)
Publisher
Years
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 81 (1989), S. 379-391 
    ISSN: 1432-1939
    Keywords: Nitrogen ; Specific leaf area ; Partitioning ; Life form ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Are plants at high altitudes short in nutrients? In order to answer this question the mineral nutrient content of leaves from over 150 plant species from 9 different mountain areas of all major climatic zones were analyzed (Kjeldahl nitrogen in all, phosphate in half of the samples, K, Mg, Mn, Ca in the Alps only). The majority of data are from herbaceous perennials, but shrubs and trees were studied as well. N-partitioning was studied in 45 herbaceous species from contrasting altitudes in the Alps. The survey falls into three categories: (1) comparisons of whole communities of species from contrasting altitudes, (2) analysis of altitudinal gradients, and (3) additional collections from high altitude sites alone. Unlike the other mineral nutrients, nitrogen content follows consistent altitudinal and latitudinal trends. The higher altitude sample always had higher N content per unit leaf area, irrespective of life form, wherever comparable plants (the same or related species) were investigated at contrasting altitudes. N content per unit dry weight (%) increased with altitude in herbaceous plants (in some species 〉4%), but was remarkably stable in evergreen woody plants (around 1%). The mean fraction of total plant N allocated to leaves of herbaceous plants in the Alps was the same at low and high altitude (1/3 of total). Leaf N (%) from the regional upper limits of higher plant life reveals a latitudinal decrease from subarctic to equatorial mountains, which may be related to the duration of annual leaf activity. Since mean N content per leaf area hardly differs between the uppermost sites, life span expectation (sink-duration) seems to control carbon investments rather than N input per leaf area. The growth of leaves at high altitude seems to be controlled in a way that leads to comparatively high nutrient contents, which in turn support high metabolic activity. Inherent developmental growth constraints inhibit nutrient dilution in the plant body and thus defy the application of classical concepts of plant-nutrient versus soil-nutrient relations developed for lowlands and in particular for cultivated plants. The results re-emphasize the global significance of links between nitrogen content, leaf sclerophylly, leaf longevity and photosynthetic capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Alpine ecology ; Shoot/root ratio ; Fine roots ; Rooting density ; Climate stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Partitioning patterns in 22 exclusively low and 27 exclusively high altitude perennial herbaceous species were examined in order to test the hypothesis that plants of high altitudes allocate more dry matter to below-ground parts and in particular to storage organs, than typical low altitude plants. Our results raise some doubts about the general validity of this hypothesis. The mean fractions of total dry matter allocated to green leaves (22±2% s.e. at low and 24±2% at high altitude) and special storage organs (28±4% at both altitudes) do not differ significantly among sites. The mean relative portions of total dry matter allocated to above-ground plant parts amount to 57±3% at low and 42±3% at high elevation (P=0.002) and differ less than often assumed. The greater below-ground fraction at high altitude results from reduced stem and proportionally increased fine root compartments. At high altitude specific root length is increased by 50% and mean individual rooting density is tripled. Fine root length per unit leaf area is 4.5 times greater (P〈0.001). However, interspecific variation in all these quantities is considerable and species with quite contrasting partitioning patterns coexist at both elevations. This suggests that the success of perennial herbaceous plants at high elevations does not necessarily depend on a large below ground biomass fraction. The increased fine root length at high altitude may substitute for reduced mycorrhizal infection. Figure 1 provides a graphical summary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...