ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Chemistry and Molecular Modeling  (2)
  • Site amplification
  • 1985-1989  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 35 (1989), S. 267-275 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We present a simple model for calculating the interatomic interaction energies in the electron gas approximation. We use a generalization of the supermolecular electronic density which includes a density overlap term. We present numerical calculations for the He-He interaction as an illustration of the method.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 29 (1986), S. 1181-1190 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Pseudopotential SCF-LCAO-MO and variational and perturbative Cl calculations were carried out for H2 molecule capture by a single Pt atom with C2v symmetry. A pseudopotential for the platinum atom including relativistic effects was used. Singlet and triplet states of the Pt-H2 interaction having different representations of the mentioned C2v symmetry were studied. The triplet ground state of Pt leads to two A1 and B2 states in which the metal atom cannot capture H2; i.e., both have repulsive interaction energies. The electronic state responsible for the capture of H2 is the closed-shell, singlet A1 excited state. The equilibrium geometry of the system is reached with a broken H—H bond at a HPtH angle of about 100°. Additionally another shallower minimum for a singlet A1 linear structure is observed. Specific predictions for the thermal and photochemical Pt + H2 reactions that can be carried out under matrix isolation conditions are made.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...