ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemosensory cues  (1)
  • Design metrics
  • NADH-dependent hydroxypyruvate reductase
  • peroxisomal enzymes
  • 1985-1989  (2)
Collection
Publisher
Years
Year
  • 1
    ISSN: 1573-5028
    Keywords: cucumber ; gene expression ; hydroxypyruvate reductase ; light regulation ; peroxisomal enzymes ; serine:glyoxylate aminotransferase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of peroxisomal enzymes in cotyledons of cucumber seedlings is strongly dependent on light. In light-grown seedlings, activities of two peroxisomal enzymes, hydroxypyruvate reductase (HPR) and serine: glyoxylate aminotransferase (SGAT), were barely detectable until three days postimbibition, after which time both activities increased rapidly and linearly for at least three days. In the dark, the activities of these enzymes increased slightly over the same time period, but only to about 5% to 10% of 7-day light-induced levels. When 51/2-day dark-grown seedlings were transferred into white light, activities of HPR and SGAT began to increase after approximately 8 h. HPR protein was shown by an immunoprecipitation assay to increase concurrently with enzymatic activity in both light- and dark-grown cotyledons. Immunoblotting results suggested that the amounts of SGAT-A and SGAT-B, the two subunits of SGAT, also developed along with SGAT activity. The relative levels of translatable mRNAs encoding HPR, SGAT-A, and SGAT-B were also light-dependent, and increased with a developmental pattern similar to enzyme activity and protein levels in light- and dark-grown cotyledons. In 51/2-day dark-grown cotyledons that were transferred to the light, translatable mRNAs for SGAT-A and SGAT-B began to increase within 1 h of illumination and continued of increase rapidly and linearly for the next 24 h in the light to a new steady-state level that was 45 times that of dark controls. Translatable HPR mRNA exhibited a biphasic pattern of accumulation, with a three-fold increase during the first 6 h of illumination, followed by an additional six-fold increase between 8 and 24 h. The accumulation of translationally active mRNA for both enzymes preceded the accumulation of the corresponding protein and enzyme activity by about 8 h. Our data suggest that the rise in enzyme activity depends on an increase in translatable mRNA for these enzymes and is regulated at a pretranslational level, most likely involving transcription of new mRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Chemosensory cues ; olfaction ; kin recognition ; honeybees ; Apis mellifera ; Hymenoptera ; Apidae ; differential conditioning ; proboscis extension reflex ; learning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Differential training of honeybee workers using the proboscis extension reflex is applied to the problem of evaluating compounds that may potentially provide cues for kin recognition in the honeybeeApis mellifera. These cues were obtained by contaminating glass rods and steel needles with different materials found in the hive. In particular it is shown that workers discriminate between: cuticular waxes from different adult workers; eggs from the same and different hives; similar aged larvae within the same hive; and needles contaminated with the Nasonov gland secretions of different adult workers. It appears that some of these differences are due to phenotypic variation among individuals that cannot be directly attributed to environmental factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...