ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 1889-1901 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The separation of a He—CH4 mixture containing 9.95 mol% He in permeator modules that incorporate two different types of polymer membranes was studied theoretically and experimentally. The membranes were symmetric dense capillaries of silicone rubber and asymmetric hollow fibers of cellulose triacetate. These membranes exhibit reverse selectivities for He and CH4, silicone rubber being more permeable to CH4, and cellulose triacetate more permeable to He. The simultaneous use of these two types of membranes in a permeator enhances the enrichment and recovery of He compared to the levels obtained with a single-membrane permeator utilizing either membrane alone. The experimental results were found to confirm the theoretical predictions, the agreement being better at the lower stage cuts.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 31 (1985), S. 1167-1177 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mathematical models have been developed for the separation of binary gas mixtures in permeator modules housing two different types of membranes simultaneously. The membranes are selected so as to exhibit reverse selectivities toward the components of a mixture, i.e., so that one membrane is more permeable to one of the components while the second membrane is more permeable to the other component. The mathematical models describe the membrane separation process for three kinds of flow patterns of the permeated (low pressure) and unpermeated (high pressure) gas streams in the permeator, namely, “perfect mixing,” counter-current flow, and cocurrent flow. Numerical solutions of the models indicate that the extent of separation achievable in a two-membrane permeator can be much higher than in a conventional single-membrane permeator. Also, for given product compositions, the membrane area requirements of the former permeator can be lower than those of the latter. Countercurrent flow is generally the most efficient flow pattern in a two-membrane permeator, and “perfect mixing” is the least efficient one, but the opposite is true under special operating conditions.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...