ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (1)
  • General Chemistry
  • 1985-1989  (1)
Collection
Keywords
  • Biochemistry and Biotechnology  (1)
  • General Chemistry
  • Chemistry  (1)
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 29 (1987), S. 151-159 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biodehalogenation of 10-5 M concentrations of bromotrichloromethane (BTM) and 1,2-dibromo-3-chloropropane (DBCP) was studied in static cultures of Pseudomonas putida PpG-786. The experimental cultures were prepared by growing P. putida on camphor, which is known to induce the synthesis of high concentrations of cytochrome P-450 in this bacterium. Measurements of bromide ion release were found to be approximately consistent with the amounts of halocarbon degraded. Gas chromatography/elctron capture detection (GC/ECD) measurements of hydrocarbon degradation products as a function of incubation time showed the transitory appearance of chloroform and bromodichloromethane from BTM and the transitory appearance of lower boiling but unidentified products from DBCP. The degradation of BTM to trihalomethanes and the halide ion is consistent with the enzymatic reductive dehalogenation by cytochrome P-450 reported by others. The dependence of initial conversion rates on halocarbon concentration (0.1-2 ppm) and cell mass concentration (1-28 g cell/L) was determined by measuring the decline of parent halocarbon in stirred batch cell suspensions. The rate of DBCP conversion was up to 10-fold higher than the rate of BTM conversion. When the intracellular, enzyme-catalyzed conversion BTM is analyzed by the effectiveness factor of heterogeneous catalysis, the initial conversion rates measured suggest that intrinsic enzyme kinetics, rather than halocarbon permeation of the cell membrane or other diffusive processes, is rate limiting.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...