ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (2)
  • 1985-1989  (2)
Collection
Publisher
Years
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 136 (1988), S. 161-167 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: One of the earliest events to occur upon the addition of serum to quiescent cells is an increase in the intracellular pH (pHin). The relationship between this pH change and proliferation is not known. In the present study, we investigate the consequences of acidifying the cytosol using the weak acid, 5′, 5″-dimethyl oxazolidine 2,4-dione (DMO). At a concentration of 50 mM, DMO inhibits the serum-induced increases in pHin, DNA synthesis, and cell number. This concentration of DMO is shown not to inhibit the steady-state rate of mitochondrial respiration and not to inhibit DNA synthesis in a pH-independent fashion. The effects of DMO treatments are also shown to be reversible, indicating that this compound is not cytotoxic. These observations indicate that DMO inhibits cell proliferation by lowering intracellular pH. One important event that must occur prior to the initiation of DNA synthesis is an elevated rate of protein synthesis. The rate of protein synthesis in situ is extremely pH sensitive. Addition of 50 mM DMO to serum-stimulated cultures reduces the rate of leucine incorporation to unstimulated levels. These observations suggest that cytoplasmic acidification may inhibit proliferation through its effects on protein synthesis.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 136 (1988), S. 154-160 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: One of the earliest responses of quiescent mammalian cells to the addition of serum is an increase in intracellular pH (pHin). This pHin change is generally believed to be due to an increased activity of Na+/H+ exchange. A number of investigators have observed steady-state differences in pHin between cells in the presence and absence of serum. However, no one has examined differences in pHin regulation that may exist between cells chronically exposed to, or deprived of serum. In this study, we investigated the effects of serum deprivation to identify those components of pHin regulation that were associated with quiescence. To do this, we examined pHin in cells growing chronically in 10% serum as well as in cells that were either acutely (1.5-2 hr) or chronically (48 hr) deprived of serum. Intracellular pH was monitored using the fluorescence of intracellularly loaded pyranine dye. Our results indicate that the resting pHin values of chronically or acutely serum-deprived cells were not significantly different from each other yet, in both cases, were lower than those observed in cells exposed to 10% serum. Furthermore, we observed significant increases in pHin of both acutely or chronically serum-deprived cells in response to the addition of serum at various concentrations, in the presence of 24 mM bicarbonate. Chronically serum-deprived cells had slightly smaller responses and were more sensitive to lower concentrations of serum than were acutely deprived cells. Therefore, our data suggest that long-term serum deprivation affects the magnitude and sensitivity of pHin to serum stimulation and causes the loss of some form of pHin regulatory mechanism(s).
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...