ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Differential expression  (1)
  • Springer  (1)
  • 1985-1989  (1)
  • 1
    ISSN: 1617-4623
    Keywords: Tomato ; Nucleotide sequence ; Ribulose-1,5-bisphosphate carboxylase ; Multigene family ; Differential expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have cloned and sequenced all five members of the gene family for the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato, Lycopersicon esculentum cv. VFNT LA 1221 cherry line. Two of the five genes, designated Rbcs-1 and Rbcs-2, are present as single genes at individual loci. Three genes, designated Rbcs-3A, Rbcs-3B and Rbcs-3C, are organized in a tandem array within 10 kb at a third independent locus. The Rbcs-2 gene contains three introns; all the other members of the tomato gene family contain two introns. The coding sequence of Rbcs-1 differs by 14.0% from that of Rbcs-2 and by 13.3% from that of Rbcs-3 genes. Rbcs-2 shows 10.4% divergence from Rbcs-3. The exon and intron sequences of Rbcs-3A are identical to those of Rbcs-3C, and differ by 1.9% from those of Rbcs-3B. Nucleotide sequence analysis suggests that the five rbcS genes encode four different precursors, and three different mature polypeptides. S1 nuclease mapping of the 5′ end of rbcS mRNAs revealed that the mRNA leader sequences vary in length from 8 to 75 nucleotides. Northern analysis using gene-specific oligonucleotide probes from the 3′ non-coding region of each gene reveals a four to five-fold difference among the five genes in maximal steady-state mRNA levels in leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...