ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • 1985-1989  (2)
Collection
Publisher
Years
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 578 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: It has been known for some time that weakly interacting massive particles (WIMPS or cosmions) can simultaneously solve both the dark matter and solar neutrino problem.1 The idea is quite simple and elegant: such particles being the constituents of dark matter2 would, if sufficiently massive, acrete in the core region of the sun. As they orbit in the sun's interior, they transfer heat from the inner to the outer regions thereby cooling the core. Lowering the core temperature (T) by only 10% is sufficient to reduce the predicted output of observable neutrinos by a factor of 3 to 4 leading to a resolution of the solar neutrino problem.3 The crucial point is that almost 80% of the observable neutrinos (which represent only 10−6 of the total neutrino output of the sun!) result from the decay 8B±8Be*+e+ve and the rate for this is very sensitive to T). On the other hand, solar models that accurately describe bulk properties of the sun such as its total luminosity, radius, mass, and surface abundance of elements are not very sensitive to T). Indeed, changing T) by 10% has only a negligible effect on these gross properties, including the total neutrino output of the sun.3 Roughly speaking the necessary properties of the cosmion, such as its mass (Mc) and cross-section off of protons (σ) can be deduced by requiring that it lowers T± by ±10% without appreciably affecting the temperature beyond a radius ±0.1 R, where most of the solar luminosity (L) originates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 490 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...