ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DNA/genetics  (3)
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Chemical Society
  • Institute of Physics
  • National Academy of Sciences
  • Wiley
  • 1985-1989  (3)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
  • American Chemical Society
  • Institute of Physics
  • National Academy of Sciences
  • Wiley
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-17
    Description: Unequal crossing-over within a head-to-tail tandem array of the homologous red and green visual pigment genes has been proposed to explain the observed variation in green-pigment gene number among individuals and the prevalence of red-green fusion genes among color-blind subjects. This model was tested by probing the structure of the red and green pigment loci with long-range physical mapping techniques. The loci were found to constitute a gene array with an approximately 39-kilobase repeat length. The position of the red pigment gene at the 5' edge of the array explains its lack of variation in copy number. Restriction maps of the array in four individuals who differ in gene number are consistent with a head-to-tail configuration of the genes. These results provide physical evidence in support of the model and help to explain the high incidence of color blindness in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vollrath, D -- Nathans, J -- Davis, R W -- GM21891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 17;240(4859):1669-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2837827" target="_blank"〉PubMed〈/a〉
    Keywords: Color Vision Defects/*genetics ; Crossing Over, Genetic ; DNA/genetics ; DNA Restriction Enzymes ; Electrophoresis, Agar Gel ; Exons ; Female ; Genetic Variation ; Humans ; Male ; Nucleic Acid Hybridization ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Retinal Pigments/*genetics ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-10-21
    Description: Expression of a complementary DNA (cDNA) encoding the mouse MyoD1 protein in a variety of fibroblast and adipoblast cell lines converts them to myogenic cells. Polyclonal antisera to fusion proteins containing the MyoD1 sequence show that MyoD1 is a phosphoprotein present in the nuclei of proliferating myoblasts and differentiated myotubes but not expressed in 10T1/2 fibroblasts or other nonmuscle cell types. Functional domains of the MyoD1 protein were analyzed by site-directed deletional mutagenesis of the MyoD1 cDNA. Deletion of a highly basic region (residues 102 to 135) interferes with both nuclear localization and induction of myogenesis. Deletion of a short region (residues 143 to 162) that is similar to a conserved region in the c-Myc family of proteins eliminates the ability of the MyoD1 protein to initiate myogenesis but does not alter nuclear localization. Deletions of regions spanning the remainder of MyoD1 did not affect nuclear localization and did not inhibit myogenesis. Furthermore, expression of only 68 amino acids of MyoD1, containing the basic and the Myc similarity domains, is sufficient to activate myogenesis in stably transfected 10T1/2 cells. Genetic analysis maps the MyoD1 gene to mouse chromosome 7 and human chromosome 11.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tapscott, S J -- Davis, R L -- Thayer, M J -- Cheng, P F -- Weintraub, H -- Lassar, A B -- New York, N.Y. -- Science. 1988 Oct 21;242(4877):405-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3175662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cells, Cultured ; Chromosome Mapping ; DNA/genetics ; Fibroblasts/cytology ; *Genes ; Humans ; Mice ; Muscles/cytology ; *MyoD Protein ; Nuclear Proteins/*genetics/physiology ; *Oncogenes ; Phosphoproteins/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-03-01
    Description: A human complementary DNA clone specific for the alpha-chain of the T-cell receptor and a panel of rodent X human somatic cell hybrids were used to map the alpha-chain gene to human chromosome 14 in a region proximal to the immunoglobulin heavy chain locus. Analysis by means of in situ hybridization of human metaphase chromosomes served to further localize the alpha-chain gene to region 14q11q12, which is consistently involved in translocations and inversions detectable in human T-cell leukemias and lymphomas. Thus, the locus for the alpha-chain T-cell receptor may participate in oncogene activation in T-cell tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Croce, C M -- Isobe, M -- Palumbo, A -- Puck, J -- Ming, J -- Tweardy, D -- Erikson, J -- Davis, M -- Rovera, G -- CA 10 815/CA/NCI NIH HHS/ -- CA16685/CA/NCI NIH HHS/ -- CA215875/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1985 Mar 1;227(4690):1044-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3919442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosome Mapping ; Chromosomes, Human, 13-15 ; DNA/genetics ; Genes ; Humans ; Hybrid Cells/metabolism ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin alpha-Chains/*genetics ; Leukemia/genetics ; Lymphoma/genetics ; Mice ; Nucleic Acid Hybridization ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...