ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Chalcone synthase  (1)
  • Kidney cell cultures  (1)
  • Springer  (2)
  • 1985-1989  (2)
  • 1920-1924
  • 1905-1909
Collection
  • Articles  (2)
Publisher
  • Springer  (2)
Years
  • 1985-1989  (2)
  • 1920-1924
  • 1905-1909
Year
Topic
  • 1
    ISSN: 1432-0878
    Keywords: Kidney cell cultures ; Glycosphingolipids ; Dolichols ; D-valine medium ; Beige mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Primary kidney cultures from adult beige-J (bg J/ bg J) mice were selected for epithelial cell growth using D-valine medium. After 2 weeks of attachment and proliferation in vitro, the cells form a confluent or nearly confluent monolayer that retains several phenotypic characteristics of the beige-J mutant. These include large, multilamellar inclusion bodies that are apparently dysmorphic lysosomes, and higher concentrations of neutral glycosphingolipids and dolichols than control cells. β-Glucuronidase activity, used as a lysosomal enzyme marker, is not elevated in beige-J-cultured kidney cells compared with controls, as it is in the intact kidney. The high levels of β-glucuronidase activity in both control and mutant cells may mask expression of this difference in vitro. The action of the beige-J mutation in kidney cells is thought to be due to a block in exocytosis that results in the accumulation of abnormal lysosomes and their components. The maintenance of the beige phenotype in vitro indicates that the mutation is not suppressed in primary kidney cell cultures. The expression of the beige phenotype in vitro should be useful for studies concerning the primary lesion of this mutation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Chalcone synthase ; Multigene family ; cDNA sequence ; Environmental regulation ; Phaseolus vulgaris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Chalcone synthase (CHS) catalyzes the first and key regulatory step in the branch pathway of phenylpropanoid biosynthesis specific for synthesis of ubiquitous flavonoid pigments and UV protectants. In bean (Phaseolus vulgaris L.) and other members of the Leguminoseae, chalcone synthase is also involved in the synthesis of the isoflavonoid-derived phytoalexin antibiotics characteristic of this family. We have demonstrated that the haploid genome of bean contains a family of about six to eight CHS genes, some of which are tightly clustered. Treatment of bean cells with fungal elicitor activates several of these genes leading to the accumulation of at least five and probably as many as nine distinct CHS transcripts encoding a set of CHS isopolypeptides of Mr 42–43 kDa but with differing pI in the range pH 6–7. In elicited cells specific transcripts and encoded polypeptides are differentially induced with respect to both the extent and kinetics of accumulation. Wounding or infection of hypocotyl tissue also activates several CHS genes with marked differences in the pattern of accumulation of specific transcripts and encoded polypeptides in wounded compared to infected tissue or elicited cells, indicating operation of more than one cue for defense gene activation. Illumination induces accumulation of a different set of CHS transcripts including only one of the set hitherto demonstrated to be induced by biological stress. The organization and differential regulation of the CHS gene family in bean are discussed in relation to the functions of this enzyme in adaptative and protective responses to diverse enviromental stresses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...